radial inhomogeneity
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1368
Author(s):  
Natalia A. Vasilyeva ◽  
Elena B. Rudneva ◽  
Vera L. Manomenova ◽  
Yuriy V. Grigoriev ◽  
Alexey E. Voloshin

The mosaic and radial inhomogeneity of shaped mixed crystals of K2NixCo(1–x)(SO4)2·6H2O (KCNSH) were studied depending on the supercooling of solution, its velocity and its method of supply into the shaper. It was shown that mosaic inhomogeneity could be suppressed when solution is supercooled to about 2 °C. Peripheral supply of the solution (tangential to the wall of the shaper to create a “swirling” flow) with a rate of 55–135 cm/s provides better composition uniformity along the crystal surface in comparison with upright supply of the solution (flow is perpendicular to the crystal surface).


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xibin Li ◽  
Zhiqing Zhang ◽  
Jianchao Sheng

An exact solution is proposed to study the time-harmonic torsional vibration of an elastic pile embedded in a radially inhomogeneous saturated soil. The radially inhomogeneous saturated soil is composed of inner disturbed and outer semi-infinite undisturbed concentric annular regions, with the shear modulus of the inner region changing in an exponential form along the radial direction. The governing equation of each region of the saturated soil is solved through rigorous mathematical derivation and the soil torsional impedance is derived with an exact and explicit expression. Making use of the boundary and continuity conditions of the pile-soil system, the torsional complex stiffness at the pile top is obtained in an exact closed form in the frequency domain. Selected numerical results are presented to investigate the influence of the radial inhomogeneity of the surrounding soil on the vibration characteristics of the pile-soil system.


Ultrasonics ◽  
2020 ◽  
Vol 108 ◽  
pp. 106173
Author(s):  
A. Vatulyan ◽  
V. Yurov ◽  
R. Nedin ◽  
V. Dudarev

2020 ◽  
pp. 89-94 ◽  
Author(s):  
Ekaterina V. Lovlya ◽  
Oleg A. Popov

RF inductor power losses of ferrite-free electrode-less low pressure mercury inductively-coupled discharges excited in closed-loop dielectric tube were studied. The modelling was made within the framework of low pressure inductive discharge transformer model for discharge lamps with tubes of 16, 25 and 38 mm inner diam. filled with the mixture of mercury vapour (7.5×10–3 mm Hg) and argon (0.1, 0.3 and 1.0 mm Hg) at RF frequencies of 1, 7; 3.4 and 5.1 MHz and plasma power of (25–500) W. Discharges were excited with the help of the induction coil of 3, 4 and 6 turns placed along the inner perimeter of the closed-loop tube. It was found that the dependence of coil power losses, Pcoil, on the discharge plasma power, Ppl, had the minimum while Pcoil decreased with RF frequency, tube diameter and coil number of turns. The modelling results were found in good qualitative agreement with the experimental data; quantitative discrepancies are believed to be due skin-effect and RF electric field radial inhomogeneity that were not included in discharge modelling.


2020 ◽  
Vol 66 (2) ◽  
pp. 97-104
Author(s):  
A. O. Vatul’yan ◽  
V. O. Yurov

Author(s):  
V. Krivodubskij

Cyclic regeneration of the large-scale magnetic field of the Sun underlies all the phenomena known collectively as “solar activity”. The sunspot cycle is arguably the best known manifestation of the solar magnetic cycle. We outlined here the scenario of reconstructing of toroidal magnetic field in the solar convection zone (SCZ), which, on our opinion, may help to understand why magnetic fields rise to the solar surface only in the sunspot “royal zone” and what is reason of the phenomenon of double maximum of sunspots cycle. The effect of magnetic pumping (advection) caused by radial inhomogeneity of matter with taking into account Sun’s rotation, in conjunction with deep meridional circulation, play a key role in proposed scenario. Magnetic buoyancy constrains the magnitude of toroidal field produced by the Ω effect near the bottom of the SCZ. Therefore, we examined two “antibuoyancy” effects: macroscopic turbulent diamagnetism and magnetic advection caused by radial inhomogeneity of fluid density in the SCZ, which we call as the ∇ρ effect. The Sun’s rotation substantially modifies the ∇ρ effect. The reconstructing of the toroidal field was examined assuming the balance between mean-field magnetic buoyancy, turbulent diamagnetism and the rotationally modified ∇ρ effect. We found that the reconstructing of large-scale magnetism develops differently in the near-polar and equatorial domains of the SCZ. In the near-polar domain, two downward pumping effects (macroscopic diamagnetism and rotational pumping) act against magnetic buoyancy and, as a result, they neutralize magnetic buoyancy and block the toroidal field (which is generated by the Ω effect) near the tachocline. Therefore, these two antibuoyancy effects might be the reason why sunspots at the near-polar zones are never observed. In other words, strong deep-seated fields at high latitudes may well be there, but they not produce sunspots. At the same time, in the deep layers of the equatorial domain, the rotational turbulent pumping due to the latitudinal convection anisotropy changes its direction to the opposite one (from downward to upward), thereby facilitating the migration of the field to the surface. We call this transport as first (upward) magnetic advection surge. The fragments of this floating up field can be observed after a while as sunspots at latitudes of the “royal zone”. Meanwhile, a deep equator-ward meridional flow ensures transporting of deep-seated toroidal field, which is blocked near pole in tachocline, from high latitudes to low ones where are favourable conditions for the floating up of the strong field. Here this belated strong field is transported upward to solar surface (the second upward magnetic advection surge). Ultimately, two time-delayed upward magnetic surges may cause on the surface in the “royal zone” the first and second maxima of sunspots cycle.


2019 ◽  
pp. 24-26
Author(s):  
N.A. Azarenkov ◽  
D.V. Chibisov

The problem of the presence of high-frequency oscillations in lower hybrid cavities in the plasma of the earth's ionosphere is considered. It is assumed that the oscillations in the cavity are excited due to the ring ion current across the magnetic field, in addition to the mechanism of the Hall current arising from the radial inhomogeneity of the plasma density. The radial dependence of the density of the ring ion beam is also taken into account.


Sign in / Sign up

Export Citation Format

Share Document