THYROXIN AS A DEPRESSANT OF CELL DIVISION ; ITS EFFECT ON THE CLEAVAGE AND EARLY DEVELOPMENT OF SEA URCHIN AND ASCIDIAN*

Endocrinology ◽  
1928 ◽  
Vol 12 (1) ◽  
pp. 65-80 ◽  
Author(s):  
HARRY BEAL TORREY
1978 ◽  
Vol 65 (1) ◽  
pp. 38-49 ◽  
Author(s):  
Elio Parisi ◽  
Silvana Filosa ◽  
Benita De Petrocellis ◽  
Alberto Monroy

2012 ◽  
Vol 362 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Jia L. Song ◽  
Marlon Stoeckius ◽  
Jonas Maaskola ◽  
Marc Friedländer ◽  
Nadezda Stepicheva ◽  
...  
Keyword(s):  

2016 ◽  
Vol 112 (1-2) ◽  
pp. 291-302 ◽  
Author(s):  
Yaoyao Zhan ◽  
Wanbin Hu ◽  
Weijie Zhang ◽  
Minbo Liu ◽  
Lizhu Duan ◽  
...  

Development ◽  
1971 ◽  
Vol 26 (3) ◽  
pp. 611-622
Author(s):  
Maya R. Krigsgaber ◽  
Alla A. Kostomarova ◽  
Tamara A. Terekhova ◽  
Tatiana A. Burakova

Synthesis of nuclear and cytoplasmic proteins was studied biochemically and autoradiographically in early loach (Misgurnus fossilis) and sea-urchin (Strongylocentrotus nudus) embryos. After incubation with [14C]amino acids for 5–120 min the ratio of the specific activities of nuclear, mitochondrial and 12000 g supernatant proteins was shown to be equal approximately to 6:1:2 in loach embryos and to 8:4:3 in sea-urchin embryos independently of the duration of labelling. After incubation with [3H]amino acids the number of silver grains per unit section was on the average 2·4 times higher for nuclei than it was for cytoplasm at mid-blastula and mid-gastrula stages. At the mid-gastrula the vegeto-animal gradient of protein synthesis was found. A higher level of the synthesis of nuclear proteins as compared with that of cytoplasmic proteins appears to be related to an increase in the nuclear volume and the nucleo-cytoplasmic ratio during the early development of the loach and sea-urchin embryos.


1953 ◽  
Vol s3-94 (28) ◽  
pp. 369-379
Author(s):  
M. M. SWANN

1. Developing eggs of the sea-urchin Psammechinus miliaris were subjected to carbon monoxide inhibition, which was controlled by changing from green to white light. The behaviour of the eggs was recorded by time-lapse photography. 2. If inhibition is applied before the eggs enter mitosis, their first cleavage is delayed by a time which is roughly equal to the period of the inhibition. 3. If the inhibition is applied when the cells have already entered mitosis, they complete mitosis and cleave with little or no delay, but their second cleavage is delayed by a time which is roughly equal to the period of the inhibition. 4. It is suggested that the necessary energy for the second mitosis and cleavage is being stored up during the first mitosis and cleavage, and that this energy store operates like a reservoir which is continually being filled but siphons out when it is full. Once the energy has siphoned out, it carries mitosis and cleavage through, even though the reservoir is not filling up because of carbon monoxide inhibition.


Sign in / Sign up

Export Citation Format

Share Document