paracentrotus lividus
Recently Published Documents


TOTAL DOCUMENTS

761
(FIVE YEARS 170)

H-INDEX

52
(FIVE YEARS 8)

2022 ◽  
Vol 22 ◽  
pp. 100936
Author(s):  
André M. Machado ◽  
Sergio Fernández-Boo ◽  
Manuel Nande ◽  
Rui Pinto ◽  
Benjamin Costas ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Lisa Gaspar ◽  
Patrick Flammang ◽  
Ricardo José ◽  
Ricardo Luis ◽  
Patrício Ramalhosa ◽  
...  

Sea urchins possess specialized adhesive organs, tube feet. Although initially believed to function as suckers, it is currently accepted that they rely on adhesive and de-adhesive secretions to attach and detach repeatedly from the substrate. Given the biotechnological potential of their strong reversible adhesive, sea urchins are under investigation to identify the protein and glycan molecules responsible for its surface coupling, cohesion and polymerization properties. However, this characterization has only focused on a single species, Paracentrotus lividus. To provide a broader insight into sea urchins adhesion, a comparative study was performed using four species belonging to different taxa and habitats: Diadema africanum, Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis. Their tube feet external morphology and histology was studied, together with the ultrastructure of their adhesive secretory granules. In addition, one antibody and five lectins were used on tube foot histological sections and extracts, and on adhesive footprints to detect the presence of adhesion-related (glyco)proteins like those present in P. lividus in other species. Results confirmed that the antibody raised against P. lividus Nectin labels the adhesive organs and footprints in all species. This result was further confirmed by a bioinformatic analysis of Nectin-like sequences in ten additional species, increasing the comparison to seven families and three orders. The five tested lectins (GSL II, WGA, STL, LEL, and SBA) demonstrated that there is high interspecific variability of the glycans involved in sea urchin adhesion. However, there seems to be more conservation among taxonomically closer species, like P. lividus and S. granularis. In these species, lectin histochemistry and lectin blots indicated the presence of high molecular weight putative adhesive glycoproteins bearing N-acetylglucosamine residues in the form of chitobiose in the adhesive epidermis and footprints. Our results emphasize a high selective pressure for conservation of functional domains in large putative cohesive proteins and highlight the importance of glycosylation in sea urchin adhesion with indications of taxonomy-related conservation of the conjugated glycans.


2021 ◽  
Vol 22 (22) ◽  
pp. 12498
Author(s):  
Luisa Albarano ◽  
Valerio Zupo ◽  
Marco Guida ◽  
Giovanni Libralato ◽  
Davide Caramiello ◽  
...  

Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) represent the most common pollutants in the marine sediments. Previous investigations demonstrated short-term sublethal effects of sediments polluted with both contaminants on the sea urchin Paracentrotus lividus after 2 months of exposure in mesocosms. In particular, morphological malformations observed in P. lividus embryos deriving from adults exposed to PAHs and PCBs were explained at molecular levels by de novo transcriptome assembly and real-time qPCR, leading to the identification of several differentially expressed genes involved in key physiological processes. Here, we extensively explored the genes involved in the response of the sea urchin P. lividus to PAHs and PCBs. Firstly, 25 new genes were identified and interactomic analysis revealed that they were functionally connected among them and to several genes previously defined as molecular targets of response to the two pollutants under analysis. The expression levels of these 25 genes were followed by Real Time qPCR, showing that almost all genes analyzed were affected by PAHs and PCBs. These findings represent an important further step in defining the impacts of slight concentrations of such contaminants on sea urchins and, more in general, on marine biota, increasing our knowledge of molecular targets involved in responses to environmental stressors.


2021 ◽  
Vol 21 ◽  
pp. 100881
Author(s):  
Laura Ciriminna ◽  
Geraldina Signa ◽  
Antonino Maurizio Vaccaro ◽  
Giulia Visconti ◽  
Antonio Mazzola ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3742
Author(s):  
Alonso-López Olalla ◽  
López-Ibáñez Sara ◽  
Beiras Ricardo

Due to the continuous rise in conventional plastic production and the deficient management of plastic waste, industry is developing alternative plastic products made of biodegradable or biobased polymers. The challenge nowadays is to create a new product that combines the advantages of conventional plastics with environmentally friendly properties. This study focuses on the assessment of the potential impact that polyvinyl alcohol (PVA)-based polymers may have once they are released into the marine environment, in terms of biodegradation in seawater (assessed by the percentage of the Theoretical Oxygen Demand, or % ThOD, of each compound) and aquatic toxicity, according to the standard toxicity test using Paracentrotus lividus larvae. We have tested three different materials: two glycerol-containing PVA based ones, and another made from pure PVA. Biodegradation of PVA under marine conditions without an acclimated inoculum seems to be negligible, and it slightly improves when the polymer is combined with glycerol, with a 5.3 and 8.4% ThOD achieved after a period of 28 days. Toxicity of pure PVA was also negligible (<1 toxic units, TU), but slightly increases when the material included glycerol (2.2 and 2.3 TU). These results may contribute to a better assessment of the behavior of PVA-based polymers in marine environments. Given the low biodegradation rates obtained for the tested compounds, PVA polymers still require further study in order to develop materials that are truly degradable in real marine scenarios.


2021 ◽  
Vol 9 ◽  
Author(s):  
Paolo Solari ◽  
Viviana Pasquini ◽  
Marco Secci ◽  
Angelica Giglioli ◽  
Roberto Crnjar ◽  
...  

Like other animals, echinoderms rely on chemical senses to detect and localize food resources. Here, we evaluate the chemical sensitivity of the sea urchin Paracentrotus lividus to a number of stimuli possibly related to food, such as a few sugars, compared to the blue-green algae Spirulina (Arthrospira platensis). To do this we developed a simple, innovative method based on the recording of “urchinograms” estimating the movements of spines, pedicellariae, tube feet, and eventually of the whole sea urchin, in response to chemicals, while keeping both the whole animal and the stimulus in their natural environment, underwater. Our results show that Spirulina is a highly stimulating compound for the sea urchin, by acting in a dose-dependent manner. The animals resulted also sensitive, even if to a lesser extent, to some sugars, such as the monosaccharide glucose, but not to its isomer fructose, while among disaccharides, they sensed cellobiose, but not sucrose or trehalose. From an applied point of view, any insight into the chemical sensitivity of sea urchins toward potential food-related compounds may lead to the discovery of key chemicals that would help improve the efficiency and reduce the costs of dietary substrates for optimization of intensive rearing strategies. Although this method has been developed for P. lividus, it will be suitable to evaluate the chemical sensitivity of other echinoderms and other marine invertebrates characterized by low mobility.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jordi F. Pagès ◽  
Frederic Bartumeus ◽  
Javier Romero ◽  
Teresa Alcoverro

Abstract Background Classic ecological formulations of predator–prey interactions often assume that predators and prey interact randomly in an information-limited environment. In the field, however, most prey can accurately assess predation risk by sensing predator chemical cues, which typically trigger some form of escape response to reduce the probability of capture. Here, we explore under laboratory-controlled conditions the long-term (minutes to hours) escaping response of the sea urchin Paracentrotus lividus, a key species in Mediterranean subtidal macrophyte communities. Methods Behavioural experiments involved exposing a random sample of P. lividus to either one of two treatments: (i) control water (filtered seawater) or (ii) predator-conditioned water (with cues from the main P. lividus benthic predator—the gastropod Hexaplex trunculus). We analysed individual sea urchin trajectories, computed their heading angles, speed, path straightness, diffusive properties, and directional entropy (as a measure of path unpredictability). To account for the full picture of escaping strategies, we followed not only the first instants post-predator exposure, but also the entire escape trajectory. We then used linear models to compare the observed results from control and predators treatments. Results The trajectories from sea urchins subjected to predator cues were, on average, straighter and faster than those coming from controls, which translated into differences in the diffusive properties and unpredictability of their movement patterns. Sea urchins in control trials showed complex diffusive properties in an information-limited environment, with highly variable trajectories, ranging from Brownian motion to superdiffusion, and even marginal ballistic motion. In predator cue treatments, variability reduced, and trajectories became more homogeneous and predictable at the edge of ballistic motion. Conclusions Despite their old evolutionary origin, lack of cephalization, and homogenous external appearance, the trajectories that sea urchins displayed in information-limited environments were complex and ranged widely between individuals. Such variable behavioural repertoire appeared to be intrinsic to the species and emerged when the animals were left unconstrained. Our results highlight that fear from predators can be an important driver of sea urchin movement patterns. All in all, the observation of anomalous diffusion, highly variable trajectories and the behavioural shift induced by predator cues, further highlight that the functional forms currently used in classical predator–prey models are far from realistic.


2021 ◽  
Vol 8 ◽  
Author(s):  
Orlando J. Luis ◽  
João M. Gago

Echinoid feeding biology is well known but their sluggish responses to chemical stimuli have turned them into inadequately worked in the field of chemoreception. Echinoid responses to chemical stimulation had allowed, so far, only qualitative analyses based on tube-feet activity, directional, or masticatory movements, and artificial agarose foods. Besides stimulation through plumes of dissolved organic compounds and response analysis based on tube-feet activity, we propose another method to chemically stimulate echinoids that allows for fast and unambiguous responses and thus, quantitative analyses. Small squared pieces of absorbent semi-synthetic cleaning cloths, soaked with specific chemical compounds (simulacra), such as water insoluble lipid oils, were deposited singly or concurrently with a blank on the aboral hemisphere of each sea urchin, allowing choice and eventual transport down to the mouth by tube feet and spines of one or both cloths. The responsiveness of Paracentrotus lividus was clearly dependent on its nutritional state. Well-fed sea urchins (maize whole grains) rarely responded, while the ones fed with less caloric rations (Kombu seaweed) responded faster and objectively. Stimulating sea urchin P. lividus with 41 different food-related compounds, such as carbohydrates, proteins, peptides and amino acids, oils and fatty acids, and purified chemicals related with some human basic tastes, it was possible to evidence a clear ability of this echinoid species to positively discriminate proteins, starches, and a very few oils. Perceived as incitants/stimulants we have only found among proteins gliadin (from wheat gluten) but not casein (from bovine milk), among polysaccharides starch but not laminarin (from kelp) or glycogen (from mussels), and among lipids only the fatty acid linolenic acid. Among tissues, Kombu alga flesh and mussel flesh were readily perceived as both incitant/stimulant but not Kombu and mussel extracts. Therefore, the combined results reported here provide evidence for P. lividus as an omnivorous species rather than a strictly herbivorous marine species. However, the restricted group of food-related compounds perceived by this species as incitants or suppressants and as stimulants or deterrents was shown to be remarkably related to other vertebrates whose kinship was confirmed by the sequencing of the genome of another plant-eater sea urchin.


Sign in / Sign up

Export Citation Format

Share Document