scholarly journals A Novel GALNT3 Mutation in a Pseudoautosomal Dominant Form of Tumoral Calcinosis: Evidence That the Disorder Is Autosomal Recessive

2005 ◽  
Vol 90 (4) ◽  
pp. 2420-2423 ◽  
Author(s):  
Shoji Ichikawa ◽  
Kenneth W. Lyles ◽  
Michael J. Econs

Abstract Familial tumoral calcinosis is a rare metabolic disorder, characterized by ectopic calcification and hyperphosphatemia. Recently biallelic mutations in the GalNAc transferase 3 (GALNT3) gene were identified in two families with tumoral calcinosis. In the present study, we performed mutation analysis of the GALNT3 gene in a multigenerational family, which was originally described to have an autosomal dominant form of tumoral calcinosis. We identified a novel splice site mutation in intron 1 (IVS1–2a→t), likely leading to skipping of exon 2. The proband was a compound heterozygote for the splice site mutation and the previously reported nonsense mutation (484C→T; R162X). His affected maternal great uncle was homozygous for the splice site mutation. Biallelic mutations found in two generations demonstrated that the family had pseudoautosomal dominant inheritance, confirming that tumoral calcinosis is in fact an autosomal recessive trait. However, genetic and biochemical findings suggest that carriers of a single mutation may also manifest subtle biochemical abnormalities. Furthermore, coexpression of GALNT3 and fibroblast growth factor 23 (FGF23), a key regulator of phosphate homeostasis, in certain tissues suggests that O-glycosylation of FGF23 by GALNT3 may be necessary for proper function of FGF23.

2018 ◽  
Vol 45 (5) ◽  
pp. 613-617 ◽  
Author(s):  
Yukari Mizukami ◽  
Ryota Hayashi ◽  
Daisuke Tsuruta ◽  
Yutaka Shimomura ◽  
Koji Sugawara

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
M. N. Preising ◽  
C. Friedburg ◽  
W. Bowl ◽  
B. Lorenz

In daily life, myopia is a frequent cause of reduced visual acuity (VA) due to missing or incomplete optical correction. While the genetic cause of high myopia itself is not well understood, a significant number of cases are secondary to hereditary malfunctions or degenerations of the retina. The mechanism by which this occurs remains yet unclear. Two female siblings, 4 y and 2 y, respectively, from a consanguineous Pakistani family were referred to our department for reduced VA and strabismus. Both girls were highly myopic and hence were further examined using standard clinical tests and electroretinography (ERG). The latter confirmed confounded electrical coupling of photoreceptors and bipolar cells. Further inquiry and testing confirmed a similar condition for the father including impaired night vision, reduced VA, photophobia, and an equally characteristic ERG. Findings in the mother were unremarkable. Subsequent genetic analysis of autosomal recessive and X-linked genes for congenital stationary night blindness (CSNB) revealed a novel homozygous splice site mutation in CACNA1F in the two girls transmitted from both the father and the mother. While in males the above clinical constellation is a frequent finding, this report, to the authors’ knowledge, is the first demonstrating biallelic mutations at the CACNA1F locus in females.


2004 ◽  
Vol 116 (1-2) ◽  
pp. 114-120 ◽  
Author(s):  
Samuel Canizales-Quinteros ◽  
Carlos A. Aguilar-Salinas ◽  
Adriana Huertas-Vázquez ◽  
María L. Ordóñez-Sánchez ◽  
Maribel Rodríguez-Torres ◽  
...  

1997 ◽  
Vol 236 (3) ◽  
pp. 544-548 ◽  
Author(s):  
Ellen A.C.M. van Beurden ◽  
Michelle de Graaf ◽  
Udo Wendel ◽  
Richard Gitzelmann ◽  
Ruud Berger ◽  
...  

2010 ◽  
Vol 162 (6) ◽  
pp. 1384-1387 ◽  
Author(s):  
C. Covaciu ◽  
M. Castori ◽  
N. De Luca ◽  
P. Ghirri ◽  
A. Nannipieri ◽  
...  

2006 ◽  
Vol 16 (7) ◽  
pp. 432-436 ◽  
Author(s):  
Juliane S. Müller ◽  
Henriett Piko ◽  
Benedikt G.H. Schoser ◽  
Beate Schlotter-Weigel ◽  
Peter Reilich ◽  
...  

Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2650-2658 ◽  
Author(s):  
Vibor Petkovic ◽  
Michela Godi ◽  
Didier Lochmatter ◽  
Andrée Eblé ◽  
Christa E. Flück ◽  
...  

An autosomal dominant form of isolated GH deficiency (IGHD II) can result from heterozygous splice site mutations that weaken recognition of exon 3 leading to aberrant splicing of GH-1 transcripts and production of a dominant-negative 17.5-kDa GH isoform. Previous studies suggested that the extent of missplicing varies with different mutations and the level of GH expression and/or secretion. To study this, wt-hGH and/or different hGH-splice site mutants (GH-IVS+2, GH-IVS+6, GH-ISE+28) were transfected in rat pituitary cells expressing human GHRH receptor (GC-GHRHR). Upon GHRH stimulation, GC-GHRHR cells coexpressing wt-hGH and each of the mutants displayed reduced hGH secretion and intracellular GH content when compared with cells expressing only wt-hGH, confirming the dominant-negative effect of 17.5-kDa isoform on the secretion of 22-kDa GH. Furthermore, increased amount of 17.5-kDa isoform produced after GHRH stimulation in cells expressing GH-splice site mutants reduced production of endogenous rat GH, which was not observed after GHRH-induced increase in wt-hGH. In conclusion, our results support the hypothesis that after GHRH stimulation, the severity of IGHD II depends on the position of splice site mutation leading to the production of increasing amounts of 17.5-kDa protein, which reduces the storage and secretion of wt-GH in the most severely affected cases. Due to the absence of GH and IGF-I-negative feedback in IGHD II, a chronic up-regulation of GHRH would lead to an increased stimulatory drive to somatotrophs to produce more 17.5-kDa GH from the severest mutant alleles, thereby accelerating autodestruction of somatotrophs in a vicious cycle.


Sign in / Sign up

Export Citation Format

Share Document