scholarly journals Glucocorticoid-lnduced Stimulation of Ribosomal Gene Transcription in Rat Hepatoma Cells is Mediated by Modification of RNA Polymerase I or an Associated Factor

1989 ◽  
Vol 3 (11) ◽  
pp. 1861-1868 ◽  
Author(s):  
Maria L. Webb ◽  
Jane F. Mealey-Cavender ◽  
Samson T. Jacob
Chromosoma ◽  
1988 ◽  
Vol 96 (6) ◽  
pp. 411-416 ◽  
Author(s):  
Kathleen M. Rose ◽  
Jan Szopa ◽  
Fu-Sheng Han ◽  
Yung-Chi Cheng ◽  
Arndt Richter ◽  
...  

1994 ◽  
Vol 14 (3) ◽  
pp. 2011-2020
Author(s):  
P Labhart

Protein kinase(s) and protein phosphatase(s) present in a Xenopus S-100 transcription extract strongly influence promoter-dependent transcription by RNA polymerase I. The protein kinase inhibitor 6-dimethyl-aminopurine causes transcription to increase, while the protein phosphatase inhibitor okadaic acid causes transcription to decrease. Repression is also observed with inhibitor 2, and the addition of extra protein phosphatase 1 stimulates transcription, indicating that the endogenous phosphatase is a type 1 enzyme. Partial fractionation of the system, single-round transcription reactions, and kinetic experiments show that two different steps during ribosomal gene transcription are sensitive to protein phosphorylation: okadaic acid affects a step before or during transcription initiation, while 6-dimethylaminopurine stimulates a process "late" in the reaction, possibly reinitiation. The present results are a clear demonstration that transcription by RNA polymerase I can be regulated by protein phosphorylation.


1994 ◽  
Vol 14 (3) ◽  
pp. 2011-2020 ◽  
Author(s):  
P Labhart

Protein kinase(s) and protein phosphatase(s) present in a Xenopus S-100 transcription extract strongly influence promoter-dependent transcription by RNA polymerase I. The protein kinase inhibitor 6-dimethyl-aminopurine causes transcription to increase, while the protein phosphatase inhibitor okadaic acid causes transcription to decrease. Repression is also observed with inhibitor 2, and the addition of extra protein phosphatase 1 stimulates transcription, indicating that the endogenous phosphatase is a type 1 enzyme. Partial fractionation of the system, single-round transcription reactions, and kinetic experiments show that two different steps during ribosomal gene transcription are sensitive to protein phosphorylation: okadaic acid affects a step before or during transcription initiation, while 6-dimethylaminopurine stimulates a process "late" in the reaction, possibly reinitiation. The present results are a clear demonstration that transcription by RNA polymerase I can be regulated by protein phosphorylation.


1995 ◽  
Vol 15 (8) ◽  
pp. 4648-4656 ◽  
Author(s):  
M H Paalman ◽  
S L Henderson ◽  
B Sollner-Webb

We show that the mouse ribosomal DNA (rDNA) spacer promoter acts in vivo to stimulate transcription from a downstream rRNA gene promoter. This augmentation of mammalian RNA polymerase I transcription is observed in transient-transfection experiments with three different rodent cell lines, under noncompetitive as well as competitive transcription conditions, over a wide range of template concentrations, whether or not the enhancer repeats alone stimulate or repress expression from the downstream gene promoter. Stimulation of gene promoter transcription by the spacer promoter requires the rDNA enhancer sequences to be present between the spacer promoter and gene promoter and to be oriented as in native rDNA. Stimulation also requires that the spacer promoter be oriented toward the enhancer and gene promoter. However, stimulation does not correlate with transcription from the spacer promoter because the level of stimulation is not altered by either insertion of a functional mouse RNA polymerase I transcriptional terminator between the spacer promoter and enhancer or replacement with a much more active heterologous polymerase I promoter. Further analysis with a series of mutated spacer promoters indicates that the stimulatory activity does not reside in the major promoter domains but requires the central region of the promoter that has been correlated with enhancer responsiveness in vivo.


Sign in / Sign up

Export Citation Format

Share Document