transcriptional terminator
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Luyi Cheng ◽  
Elise N. White ◽  
Naomi L. Brandt ◽  
Angela M Yu ◽  
Alan A. Chen ◽  
...  

RNA folds cotranscriptionally to traverse out-of-equilibrium intermediate structures that are important for RNA function in the context of gene regulation. To investigate this process, here we study the structure and function of the Bacillus subtilis yxjA purine riboswitch, a transcriptional riboswitch that downregulates a nucleoside transporter in response to binding guanine. Although the aptamer and expression platform domain sequences of the yxjA riboswitch do not completely overlap, we hypothesized that a strand exchange process triggers its structural switching in response to ligand binding. In vivo fluorescence assays, structural chemical probing data, and experimentally informed secondary structure modeling suggest the presence of a nascent intermediate central helix. The formation of this central helix in the absence of ligand appears to compete with both the aptamer's P1 helix and the expression platform's transcriptional terminator. All-atom molecular dynamics simulations support the hypothesis that ligand binding stabilizes the aptamer P1 helix against central helix strand invasion, thus allowing the terminator to form. These results present a potential model mechanism to explain how ligand binding can induce downstream conformational changes by influencing local strand displacement processes of intermediate folds that could be at play in multiple riboswitch classes.


2021 ◽  
Author(s):  
Brandon M Sy ◽  
Jai Justin Tree

To sense the transition from environment to host, bacteria use a range of environmental cues to control expression of virulence genes. Iron is tightly sequestered in host tissues and in the human pathogen enterohaemorrhagic E. coli (EHEC) iron-limitation induces transcription of the outermembrane haem transporter encoded by chuAS. ChuA expression is post-transcriptionally activated at 37oC by a FourU RNA thermometer ensuring that the haem receptor is only expressed under low iron, high temperature conditions that indicate the host. Here we demonstrate that expression of chuA is also independently regulated by the cAMP-responsive sRNA CyaR and transcriptional terminator Rho. These results indicate that chuA expression is regulated at the transcription initiation, transcript elongation, and translational level. The natural dependence of these processes creates a hierarchy of regulatory AND and OR logic gates that integrate information about the local environment. We show that the logic of the chuA regulatory circuit is activated under conditions that satisfy low iron AND (low glucose OR high temperature). We speculate that additional sensing of a gluconeogenic environment allows further precision in determining when EHEC is at the gastrointestinal epithelium of the host. With previous studies, it appears that the chuA transcript is controlled by eight regulatory inputs that control expression through six different transcriptional and post-transcriptional mechanisms. The results highlight the ability of regulatory sRNAs to integrate multiple environmental signals into a conditional hierarchy of signal input.


Author(s):  
Hang Xiao ◽  
Claus Heiner Bang-Berthelsen ◽  
Peter Ruhdal Jensen ◽  
Christian Solem

Lactococcus lactis has great potential for high-yield production of mannitol, which has not yet been fully realized. In this study, we characterize how the mannitol genes in L. lactis are organized and regulated, and use this information to establish efficient mannitol production. Although the organization of the mannitol genes in L. lactis was similar to that in other Gram-positives, mtlF and mtlD , encoding the Enzyme IIA component (EIIA mtl ) of the mannitol phosphotransferase system (PTS), and the mannitol-1-phosphate dehydrogenase, respectively, were separated by a transcriptional terminator, and the mannitol genes were found to be organized in two transcriptional units: an operon comprising mtlA , encoding the Enzyme IIBC component (EIIBC mtl ) of the mannitol PTS, mtlR , encoding a transcriptional activator, and mtlF , and a separately expressed mtlD . The promoters driving expression of the two transcriptional units were somewhat similar, and both contained predicted catabolite responsive elements ( cre ). Presence of carbon catabolite repression was demonstrated, and was shown to be relieved in stationary phase cells. The transcriptional activator MtlR ( mtlR ), in some Gram-positives, is repressed by phosphorylation by EIIA mtl , and when we knocked-out mtlF we indeed observed enhanced expression from the two promotors, which indicated that this mechanism was in place. Finally, by overexpressing the mtlD gene and using stationary phase cells as biocatalysts, we attained 10.1 g/L mannitol with a 55% yield, which is the highest titer ever reported for L. lactis . Summing up, the results of our study should be useful for improving the mannitol producing capacity of this important industrial organism. Importance Lactococcus lactis is the most studied species of the Lactic Acid Bacteria, and it is widely used in various food fermentations. To date, there have been several attempts to persuade L. lactis into producing mannitol, a sugar alcohol with important therapeutic and food applications. Until now, to achieve mannitol production in L. lactis , with significant titer and yield, it has been necessary to introduce and express foreign genes, which precludes the use of such strains in foods, due to their recombinant status. In this study, we systematically characterize how the mannitol genes in L. lactis are regulated, and demonstrate how this impacts on mannitol production capability. We harness this information and manage to establish efficient mannitol production, without introducing foreign genes.


Author(s):  
Molly R Gordon ◽  
Jin Zhu ◽  
Victoria Qu ◽  
Rong Li

Abstract To maintain genome stability, organisms depend on faithful chromosome segregation, a process affected by diverse genetic pathways, some of which are not directly linked to mitosis. In this study, we set out to explore one such pathway represented by an under-characterized gene, SNO1, identified previously in screens of the Yeast Knockout (YKO) library for mitotic fidelity genes. We found that the causative factor increasing mitotic error rate in the sno1Δ mutant is not loss of the Sno1 protein, but rather perturbation to the mRNA of the neighboring convergent gene, CTF13, encoding an essential component for forming the yeast kinetochore. This is caused by a combination of the Kanamycin resistance gene and the transcriptional terminator used in the YKO library affecting the mRNA level and quality of the neighboring convergent gene. We further provide a list of gene pairs potentially subjected to this artifact, which may be useful for accurate phenotypic interpretation of YKO mutants.


2021 ◽  
Vol 22 (6) ◽  
pp. 3033
Author(s):  
Haowei Zhang ◽  
Qin Li ◽  
Yongbin Li ◽  
Sanfeng Chen

Serine is important for nearly all microorganisms in protein and downstream amino acids synthesis, however, the effect of serine on growth and nitrogen fixation was not completely clear in many bacteria, besides, the regulatory mode of serine remains to be fully established. In this study, we demonstrated that L-serine is essential for growth and nitrogen fixation of Paenibacillus polymyxa WLY78, but high concentrations of L-serine inhibit growth, nitrogenase activity, and nifH expression. Then, we revealed that expression of the serA whose gene product catalyzes the first reaction in the serine biosynthetic pathway is regulated by the T-box riboswitch regulatory system. The 508 bp mRNA leader region upstream of the serA coding region contains a 280 bp T-box riboswitch. The secondary structure of the T-box riboswitch with several conserved features: three stem-loop structures, a 14-bp T-box sequence, and an intrinsic transcriptional terminator, is predicted. Mutation and the transcriptional leader-lacZ fusions experiments revealed that the specifier codon of serine is AGC (complementary to the anticodon sequence of tRNAser). qRT-PCR showed that transcription of serA is induced by serine starvation, whereas deletion of the specifier codon resulted in nearly no expression of serA. Deletion of the terminator sequence or mutation of the continuous seven T following the terminator led to constitutive expression of serA. The data indicated that the T-box riboswitch, a noncoding RNA segment in the leader region, regulates expression of serA by a transcription antitermination mechanism.


Genetics ◽  
2020 ◽  
Vol 216 (3) ◽  
pp. 689-700
Author(s):  
Sandip De ◽  
Natalie D. Gehred ◽  
Miki Fujioka ◽  
Fountane W. Chan ◽  
James B. Jaynes ◽  
...  

Polycomb group (PcG) proteins are an important group of transcriptional repressors that act by modifying chromatin. PcG target genes are covered by the repressive chromatin mark H3K27me3. Polycomb repressive complex 2 (PRC2) is a multiprotein complex that is responsible for generating H3K27me3. In Drosophila, PRC2 is recruited by Polycomb Response Elements (PREs) and then trimethylates flanking nucleosomes, spreading the H3K27me3 mark over large regions of the genome, the “Polycomb domains.” What defines the boundary of a Polycomb domain? There is experimental evidence that insulators, PolII, and active transcription can all form the boundaries of Polycomb domains. Here we divide the boundaries of larval Polycomb domains into six different categories. In one category, genes are transcribed toward the Polycomb domain, where active transcription is thought to stop the spreading of H3K27me3. In agreement with this, we show that introducing a transcriptional terminator into such a transcription unit causes an extension of the Polycomb domain. Additional data suggest that active transcription of a boundary gene may restrict the range of enhancer activity of a Polycomb-regulated gene.


2020 ◽  
Author(s):  
Daniel P. Cetnar ◽  
Howard M. Salis

ABSTRACTmRNA degradation is a central process that affects all gene expression levels, and yet the determinants that control mRNA decay rates remain poorly characterized. Here, we applied a synthetic biology, learn-by-design approach to elucidate the sequence and structural determinants that control mRNA stability in bacterial operons. We designed, constructed, and characterized 82 operons, systematically varying RNAse binding site characteristics, translation initiation rates, and transcriptional terminator efficiencies in the 5’ UTR, intergenic, and 3’ UTR regions, and measuring their mRNA levels using RT-qPCR assays. We show that introducing long single-stranded RNA into 5’ UTRs reduced mRNA levels by up to 9.4-fold and that lowering translation rates reduced mRNA levels by up to 11.8-fold. We also found that RNAse binding sites in intergenic regions had much lower effects on mRNA levels. Surprisingly, changing transcriptional termination efficiency or introducing long single-stranded RNA into 3’ UTRs had no effect on upstream mRNA levels. From these measurements, we developed and validated biophysical models of ribosome protection and RNAse activity with excellent quantitative correspondence. We also formulated design rules to rationally control a mRNA’s stability, facilitating the automated design of engineered genetic systems with desired functionalities.


2019 ◽  
Author(s):  
Boyang Hua ◽  
Christopher P. Jones ◽  
Jaba Mitra ◽  
Peter J. Murray ◽  
Rebecca Rosenthal ◽  
...  

SummaryRiboswitches function through cotranscriptional conformation switching governed by cognate ligand concentration, RNA folding and transcription elongation kinetics. To investigate how these parameters influence riboswitch folding, we developed a novel vectorial folding assay (VF) in which the superhelicase Rep-X sequentially liberates the RNA strand from a heteroduplex in a 5’-to-3’ direction, mimicking the nascent chain emergence during transcription. The RNA polymerase (RNAP)-free VF recapitulates the kinetically controlled cotranscriptional folding of a ZTP riboswitch, whose activation is favored by slower transcription, strategic pausing, or a weakened transcriptional terminator. New methods to observe positions and local rates of individual helicases show an average Rep-X unwinding rate similar to bacterial RNAP elongation (~60 nt/s). Real-time single-molecule monitoring captured folding riboswitches in multiple states, including an intermediate responsible for delayed terminator formation. These methods allow observation of individual folding RNAs as they occupy distinct folding channels within the landscape that controls gene expression and showed that riboswitch fate control is encoded in its sequence and is readily interpreted by a directionally moving protein even in the absence of an RNA polymerase.


2017 ◽  
Vol 34 (11) ◽  
pp. 2839-2855 ◽  
Author(s):  
Andrea González-González ◽  
Shaun M. Hug ◽  
Alejandra Rodríguez-Verdugo ◽  
Jagdish Suresh Patel ◽  
Brandon S. Gaut

Sign in / Sign up

Export Citation Format

Share Document