Some asymptotic theory for functional regression with stationary regressor

Author(s):  
Frits Ruymgaart ◽  
Jing Wang ◽  
Shih-Hsuan Wei
2011 ◽  
Vol 2011 ◽  
pp. 1-22
Author(s):  
Frits Ruymgaart ◽  
Jing Wang ◽  
Shih-Hsuan Wei ◽  
Li Yu

Exploiting an expansion for analytic functions of operators, the asymptotic distribution of an estimator of the functional regression parameter is obtained in a rather simple way; the result is applied to testing linear hypotheses. The expansion is also used to obtain a quick proof for the asymptotic optimality of a functional classification rule, given Gaussian populations.


2007 ◽  
Author(s):  
Gane Samb Lo ◽  
Serigne Touba Sall ◽  
Cheikh Tidiane Seck

Author(s):  
Russell Cheng

This book relies on maximum likelihood (ML) estimation of parameters. Asymptotic theory assumes regularity conditions hold when the ML estimator is consistent. Typically an additional third derivative condition is assumed to ensure that the ML estimator is also asymptotically normally distributed. Standard asymptotic results that then hold are summarized in this chapter; for example, the asymptotic variance of the ML estimator is then given by the Fisher information formula, and the log-likelihood ratio, the Wald and the score statistics for testing the statistical significance of parameter estimates are all asymptotically equivalent. Also, the useful profile log-likelihood then behaves exactly as a standard log-likelihood only in a parameter space of just one dimension. Further, the model can be reparametrized to make it locally orthogonal in the neighbourhood of the true parameter value. The large exponential family of models is briefly reviewed where a unified set of regular conditions can be obtained.


Author(s):  
François Freddy Ateba ◽  
Manuel Febrero-Bande ◽  
Issaka Sagara ◽  
Nafomon Sogoba ◽  
Mahamoudou Touré ◽  
...  

Mali aims to reach the pre-elimination stage of malaria by the next decade. This study used functional regression models to predict the incidence of malaria as a function of past meteorological patterns to better prevent and to act proactively against impending malaria outbreaks. All data were collected over a five-year period (2012–2017) from 1400 persons who sought treatment at Dangassa’s community health center. Rainfall, temperature, humidity, and wind speed variables were collected. Functional Generalized Spectral Additive Model (FGSAM), Functional Generalized Linear Model (FGLM), and Functional Generalized Kernel Additive Model (FGKAM) were used to predict malaria incidence as a function of the pattern of meteorological indicators over a continuum of the 18 weeks preceding the week of interest. Their respective outcomes were compared in terms of predictive abilities. The results showed that (1) the highest malaria incidence rate occurred in the village 10 to 12 weeks after we observed a pattern of air humidity levels >65%, combined with two or more consecutive rain episodes and a mean wind speed <1.8 m/s; (2) among the three models, the FGLM obtained the best results in terms of prediction; and (3) FGSAM was shown to be a good compromise between FGLM and FGKAM in terms of flexibility and simplicity. The models showed that some meteorological conditions may provide a basis for detection of future outbreaks of malaria. The models developed in this paper are useful for implementing preventive strategies using past meteorological and past malaria incidence.


2021 ◽  
pp. 1-16
Author(s):  
Jérémie Boudreault ◽  
André St-Hilaire ◽  
Fateh Chebana ◽  
Normand E. Bergeron

Sign in / Sign up

Export Citation Format

Share Document