scholarly journals The escape rate of favorite sites of simple random walk and Brownian motion

2004 ◽  
Vol 32 (1A) ◽  
pp. 129-152 ◽  
Author(s):  
Zhan Shi ◽  
Mikhail A. Lifshits
2007 ◽  
Vol 44 (04) ◽  
pp. 1056-1067 ◽  
Author(s):  
Andreas Lindell ◽  
Lars Holst

Expressions for the joint distribution of the longest and second longest excursions as well as the marginal distributions of the three longest excursions in the Brownian bridge are obtained. The method, which primarily makes use of the weak convergence of the random walk to the Brownian motion, principally gives the possibility to obtain any desired joint or marginal distribution. Numerical illustrations of the results are also given.


2000 ◽  
Vol 32 (01) ◽  
pp. 177-192 ◽  
Author(s):  
K. S. Chong ◽  
Richard Cowan ◽  
Lars Holst

A simple asymmetric random walk on the integers is stopped when its range is of a given length. When and where is it stopped? Analogous questions can be stated for a Brownian motion. Such problems are studied using results for the classical ruin problem, yielding results for the cover time and the range, both for asymmetric random walks and Brownian motion with drift.


2013 ◽  
Vol 50 (2) ◽  
pp. 557-575
Author(s):  
Michael R. Tehranchi

This note contains two main results. (i) (Discrete time) Suppose that S is a martingale whose marginal laws agree with a geometric simple random walk. (In financial terms, let S be a risk-neutral asset price and suppose that the initial option prices agree with the Cox-Ross-Rubinstein binomial tree model.) Then S is a geometric simple random walk. (ii) (Continuous time) Suppose that S=S0eσ X-σ2〈 X〉/2 is a continuous martingale whose marginal laws agree with a geometric Brownian motion. (In financial terms, let S be a risk-neutral asset price and suppose that the initial option prices agree with the Black-Scholes model with volatility σ>0.) Then there exists a Brownian motion W such that Xt=Wt+o(t1/4+ ε) as t↑∞ for any ε> 0.


2013 ◽  
Vol 50 (02) ◽  
pp. 557-575
Author(s):  
Michael R. Tehranchi

This note contains two main results. (i) (Discrete time) Suppose that S is a martingale whose marginal laws agree with a geometric simple random walk. (In financial terms, let S be a risk-neutral asset price and suppose that the initial option prices agree with the Cox-Ross-Rubinstein binomial tree model.) Then S is a geometric simple random walk. (ii) (Continuous time) Suppose that S=S 0eσ X-σ2〈 X〉/2 is a continuous martingale whose marginal laws agree with a geometric Brownian motion. (In financial terms, let S be a risk-neutral asset price and suppose that the initial option prices agree with the Black-Scholes model with volatility σ>0.) Then there exists a Brownian motion W such that X t =W t +o(t 1/4+ ε) as t↑∞ for any ε> 0.


2007 ◽  
Vol 44 (4) ◽  
pp. 1056-1067
Author(s):  
Andreas Lindell ◽  
Lars Holst

Expressions for the joint distribution of the longest and second longest excursions as well as the marginal distributions of the three longest excursions in the Brownian bridge are obtained. The method, which primarily makes use of the weak convergence of the random walk to the Brownian motion, principally gives the possibility to obtain any desired joint or marginal distribution. Numerical illustrations of the results are also given.


2013 ◽  
Vol 50 (2) ◽  
pp. 266-279
Author(s):  
Hatem Hajri

Csáki and Vincze have defined in 1961 a discrete transformation T which applies to simple random walks and is measure preserving. In this paper, we are interested in ergodic and asymptotic properties of T. We prove that T is exact: ∩k≧1σ(Tk(S)) is trivial for each simple random walk S and give a precise description of the lost information at each step k. We then show that, in a suitable scaling limit, all iterations of T “converge” to the corresponding iterations of the continuous Lévy transform of Brownian motion.


Sign in / Sign up

Export Citation Format

Share Document