scaling limit
Recently Published Documents


TOTAL DOCUMENTS

618
(FIVE YEARS 136)

H-INDEX

38
(FIVE YEARS 5)

Author(s):  
Valentin Bonzom ◽  
Victor Nador ◽  
Adrian Tanasa

Abstract We study the double scaling limit of the O(N)3-invariant tensor model, initially introduced in Carrozza and Tanasa, Lett. Math. Phys. (2016). This model has an interacting part containing two types of quartic invariants, the tetrahedric and the pillow one. For the 2-point function, we rewrite the sum over Feynman graphs at each order in the 1/N expansion as a finite sum, where the summand is a function of the generating series of melons and chains (a.k.a. ladders). The graphs which are the most singular in the continuum limit are characterized at each order in the 1/N expansion. This leads to a double scaling limit which picks up contributions from all orders in the 1/N expansion. In contrast with matrix models, but similarly to previous double scaling limits in tensor models, this double scaling limit is summable. The tools used in order to prove our results are combinatorial, namely a thorough diagrammatic analysis of the Feynman graphs, as well as an analytic analysis of the singularities of the relevant generating series.


Author(s):  
Shengli Zhang ◽  
Hengze Qu ◽  
Jiang Cao ◽  
Yangyang Wang ◽  
Shengyuan A. Yang ◽  
...  

Author(s):  
Florian Bönsel ◽  
Patrick Krauss ◽  
Claus Metzner ◽  
Marius E. Yamakou

AbstractThe phenomenon of self-induced stochastic resonance (SISR) requires a nontrivial scaling limit between the deterministic and the stochastic timescales of an excitable system, leading to the emergence of coherent oscillations which are absent without noise. In this paper, we numerically investigate SISR and its control in single neurons and three-neuron motifs made up of the Morris–Lecar model. In single neurons, we compare the effects of electrical and chemical autapses on the degree of coherence of the oscillations due to SISR. In the motifs, we compare the effects of altering the synaptic time-delayed couplings and the topologies on the degree of SISR. Finally, we provide two enhancement strategies for a particularly poor degree of SISR in motifs with chemical synapses: (1) we show that a poor SISR can be significantly enhanced by attaching an electrical or an excitatory chemical autapse on one of the neurons, and (2) we show that by multiplexing the motif with a poor SISR to another motif (with a high SISR in isolation), the degree of SISR in the former motif can be significantly enhanced. We show that the efficiency of these enhancement strategies depends on the topology of the motifs and the nature of synaptic time-delayed couplings mediating the multiplexing connections.


Author(s):  
Nikolay Bogoliubov ◽  
◽  
Cyril Malyshev ◽  

We discuss connection between the XX0 Heisenberg spin chain and some aspects of enumerative combinatorics. The representation of the Bethe wave functions via the Schur functions allows to apply the theory of symmetric functions to the calculation of the correlation functions. We provide a combinatorial derivation of the dynamical auto-correlation functions and visualise them in terms of nests of self-avoiding lattice paths. Asymptotics of the auto-correlation functions are obtained in the double scaling limit provided that the evolution parameter is large.


2021 ◽  
Vol 31 (6) ◽  
Author(s):  
George Deligiannidis ◽  
Daniel Paulin ◽  
Alexandre Bouchard-Côté ◽  
Arnaud Doucet

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Dionysios Anninos ◽  
Beatrix Mühlmann

Abstract We study the genus expansion on compact Riemann surfaces of the gravitational path integral $$ {\mathcal{Z}}_{\mathrm{grav}}^{(m)} $$ Z grav m in two spacetime dimensions with cosmological constant Λ > 0 coupled to one of the non-unitary minimal models ℳ2m − 1, 2. In the semiclassical limit, corresponding to large m, $$ {\mathcal{Z}}_{\mathrm{grav}}^{(m)} $$ Z grav m admits a Euclidean saddle for genus h ≥ 2. Upon fixing the area of the metric, the path integral admits a round two-sphere saddle for h = 0. We show that the OPE coefficients for the minimal weight operators of ℳ2m − 1, 2 grow exponentially in m at large m. Employing the sewing formula, we use these OPE coefficients to obtain the large m limit of the partition function of ℳ2m − 1, 2 for genus h ≥ 2. Combining these results we arrive at a semiclassical expression for $$ {\mathcal{Z}}_{\mathrm{grav}}^{(m)} $$ Z grav m . Conjecturally, $$ {\mathcal{Z}}_{\mathrm{grav}}^{(m)} $$ Z grav m admits a completion in terms of an integral over large random Hermitian matrices, known as a multicritical matrix integral. This matrix integral is built from an even polynomial potential of order 2m. We obtain explicit expressions for the large m genus expansion of multicritical matrix integrals in the double scaling limit. We compute invariant quantities involving contributions at different genera, both from a matrix as well as a gravity perspective, and establish a link between the two pictures. Inspired by the proposal of Gibbons and Hawking relating the de Sitter entropy to a gravitational path integral, our setup paves a possible path toward a microscopic picture of a two-dimensional de Sitter universe.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Jordan Cotler ◽  
Kristan Jensen

Abstract We study Jackiw-Teitelboim gravity with positive cosmological constant as a model for de Sitter quantum gravity. We focus on the quantum mechanics of the model at past and future infinity. There is a Hilbert space of asymptotic states and an infinite-time evolution operator between the far past and far future. This evolution is not unitary, although we find that it acts unitarily on a subspace up to non-perturbative corrections. These corrections come from processes which involve changes in the spatial topology, including the nucleation of baby universes. There is significant evidence that this 1+1 dimensional model is dual to a 0+0 dimensional matrix integral in the double-scaled limit. So the bulk quantum mechanics, including the Hilbert space and approximately unitary evolution, emerge from a classical integral. We find that this emergence is a robust consequence of the level repulsion of eigenvalues along with the double scaling limit, and so is rather universal in random matrix theory.


Author(s):  
H. Itoyama ◽  
Katsuya Yano

The lowest critical point of one unitary matrix model with cosine plus logarithmic potential is known to correspond with the [Formula: see text] Argyres–Douglas (AD) theory and its double scaling limit derives the Painlevé II equation with parameter. Here, we consider the critical points associated with all cosine potentials and determine the scaling operators, their vacuum expectation values (vevs) and their scaling dimensions from perturbed string equations at planar level. These dimensions agree with those of [Formula: see text] AD theory.


10.37236/9923 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Benedikt Stufler

We study the asymptotic shape of random unlabelled graphs subject to certain subcriticality conditions. The graphs are sampled with probability proportional to a product of Boltzmann weights assigned to their $2$-connected components. As their number of vertices tends to infinity, we show that they admit the Brownian tree as Gromov–Hausdorff–Prokhorov scaling limit, and converge in a strengthened Benjamini–Schramm sense toward an infinite random graph. We also consider models of random graphs that are allowed to be disconnected. Here a giant connected component emerges and the small fragments converge without any rescaling towards a finite random limit graph. Our main application of these general results treats subcritical classes of unlabelled graphs. We study the special case of unlabelled outerplanar graphs in depth and calculate its scaling constant.


Sign in / Sign up

Export Citation Format

Share Document