scholarly journals On coordinates in modular lattices with a homogeneous basis

1968 ◽  
Vol 12 (4) ◽  
pp. 626-648 ◽  
Author(s):  
Benno Artmann
1969 ◽  
Vol 21 ◽  
pp. 76-83 ◽  
Author(s):  
Benno Artmann

In several papers, W. Klingenberg has elaborated the connections between Hjelmslev planes and a class of rings, called H-rings (4; 5; 6), which are rings of coordinates for the corresponding Hjelmslev planes. Certain homomorphic images of valuation rings are examples of H-rings. In these examples, the lattice of (right) ideals of the ring, say R,is a chain, and the coordinatization of the corresponding Hjelmslev plane yields a natural embedding of the plane in the lattice L(R3) of (right) submodules of the module R3. Now, L(R3) is a modular lattice with a homogeneous basis of order 3 given by the submodules a1 = (1, 0, 0)R, a2 = (0, 1, 0)R, a2 = (0, 0, 1)R, and the sublattices L(N, ai) of elements less than or equal to ai are chains. Forgetting about the ring, we find ourselves in the situation of a problem suggested by Skornyakov (7, Problem 23, p. 166), namely, to study modular lattices with a homogeneous basis of chains. Baer (2) and Inaba (3) investigated lattices of this kind with Desarguesian properties and assuming that the chains L(N, ai) were finite. Representations of the lattices by means of certain rings can be found in both articles.


1962 ◽  
Vol 5 (2) ◽  
pp. 111-121 ◽  
Author(s):  
G. Grätzer ◽  
Maria J. Wonenburger

Let L be a complemented, χ-complete modular lattice. A theorem of Amemiya and Halperin (see [l], Theorem 4.3) asserts that if the intervals [O, a] and [O, b], a, bεL, are upper χ-continuous then [O, a∪b] is also upper χ-continuous. Roughly speaking, in L upper χ-continuity is additive. The following question arises naturally: is χ-completeness an additive property of complemented modular lattices? It follows from Corollary 1 to Theorem 1 below that the answer to this question is in the negative.A complemented modular lattice is called a Von Neumann geometry or continuous geometry if it is complete and continuous. In particular a complete Boolean algebra is a Von Neumann geometry. In any case in a Von Neumann geometry the set of elements which possess a unique complement form a complete Boolean algebra. This Boolean algebra is called the centre of the Von Neumann geometry. Theorem 2 shows that any complete Boolean algebra can be the centre of a Von Neumann geometry with a homogeneous basis of order n (see [3] Part II, definition 3.2 for the definition of a homogeneous basis), n being any fixed natural integer.


2003 ◽  
Vol 99 (2) ◽  
pp. 361-372 ◽  
Author(s):  
Heng Huat Chan ◽  
Kok Seng Chua ◽  
Patrick Solé

1987 ◽  
Vol 101 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Joseph P. S. Kung

AbstractLet and ℳ be subsets of a finite lattice L. is said to be concordant with ℳ if, for every element x in L, either x is in ℳ or there exists an element x+ such that (CS1) the Möbius function μ(x, x+) ≠ 0 and (CS2) for every element j in , x ∨ j ≠ x+. We prove that if is concordant with ℳ, then the incidence matrix I(ℳ | ) has maximum possible rank ||, and hence there exists an injection σ: → ℳ such that σ(j) ≥ j for all j in . Using this, we derive several rank and covering inequalities in finite lattices. Among the results are generalizations of the Dowling-Wilson inequalities and Dilworth's covering theorem to semimodular lattices, and a refinement of Dilworth's covering theorem for modular lattices.


2014 ◽  
Vol 30 (2) ◽  
pp. 225-229
Author(s):  
GABRIELA OLTEANU ◽  

We define Baer-Galois connections between bounded modular lattices. We relate them to lifting lattices and we show that they unify the theories of (relatively) Baer and dual Baer modules.


Sign in / Sign up

Export Citation Format

Share Document