Hjelmslev Planes Derived from Modular Lattices

1969 ◽  
Vol 21 ◽  
pp. 76-83 ◽  
Author(s):  
Benno Artmann

In several papers, W. Klingenberg has elaborated the connections between Hjelmslev planes and a class of rings, called H-rings (4; 5; 6), which are rings of coordinates for the corresponding Hjelmslev planes. Certain homomorphic images of valuation rings are examples of H-rings. In these examples, the lattice of (right) ideals of the ring, say R,is a chain, and the coordinatization of the corresponding Hjelmslev plane yields a natural embedding of the plane in the lattice L(R3) of (right) submodules of the module R3. Now, L(R3) is a modular lattice with a homogeneous basis of order 3 given by the submodules a1 = (1, 0, 0)R, a2 = (0, 1, 0)R, a2 = (0, 0, 1)R, and the sublattices L(N, ai) of elements less than or equal to ai are chains. Forgetting about the ring, we find ourselves in the situation of a problem suggested by Skornyakov (7, Problem 23, p. 166), namely, to study modular lattices with a homogeneous basis of chains. Baer (2) and Inaba (3) investigated lattices of this kind with Desarguesian properties and assuming that the chains L(N, ai) were finite. Representations of the lattices by means of certain rings can be found in both articles.

1962 ◽  
Vol 5 (2) ◽  
pp. 111-121 ◽  
Author(s):  
G. Grätzer ◽  
Maria J. Wonenburger

Let L be a complemented, χ-complete modular lattice. A theorem of Amemiya and Halperin (see [l], Theorem 4.3) asserts that if the intervals [O, a] and [O, b], a, bεL, are upper χ-continuous then [O, a∪b] is also upper χ-continuous. Roughly speaking, in L upper χ-continuity is additive. The following question arises naturally: is χ-completeness an additive property of complemented modular lattices? It follows from Corollary 1 to Theorem 1 below that the answer to this question is in the negative.A complemented modular lattice is called a Von Neumann geometry or continuous geometry if it is complete and continuous. In particular a complete Boolean algebra is a Von Neumann geometry. In any case in a Von Neumann geometry the set of elements which possess a unique complement form a complete Boolean algebra. This Boolean algebra is called the centre of the Von Neumann geometry. Theorem 2 shows that any complete Boolean algebra can be the centre of a Von Neumann geometry with a homogeneous basis of order n (see [3] Part II, definition 3.2 for the definition of a homogeneous basis), n being any fixed natural integer.


Author(s):  
Francois Koch van Niekerk

Not every element in a lattice has a complement. In this paper we introduce a notion of ranked complement, which depends on a natural number [Formula: see text], so that for every element [Formula: see text] in a lattice with finite height there exists [Formula: see text] such that [Formula: see text] has a complement of rank [Formula: see text]. One of the main results we establish is that in a modular lattice having finite height, every element has a complement of rank less than [Formula: see text] if and only if there is a chain [Formula: see text] of elements such that each interval [Formula: see text] is a complemented lattice.


1989 ◽  
Vol 41 (6) ◽  
pp. 961-1004 ◽  
Author(s):  
Michael S. Roddy

In [16] Freese showed that the word problem for the free modular lattice on 5 generators is unsolvable. His proof makes essential use of Mclntyre's construction of a finitely presented field with unsolvable word problem [30]. (We follow Cohn [7] in calling what is commonly called a division ring a field, and what is commonly called a field a commutative field.) In this paper we will use similar ideas to obtain unsolvability results for varieties of modular ortholattices. The material in this paper is fairly wide ranging, the following are recommended as reference texts.


1979 ◽  
Vol 31 (3) ◽  
pp. 558-564 ◽  
Author(s):  
Joe W. Fisher

This paper establishes the following combinatorial result concerning the automorphisms of a modular lattice.THEOREM. Let M be a modular lattice and let G be a finite subgroup of the automorphism group of M. If the sublattice, MG, of (common) fixed points (under G) satisfies any of a large class of chain conditions, then M satisfies the same chain condition. Some chain conditions in this class are the following: the ascending chain condition; the descending chain condition; Krull dimension; the property of having no uncountable chains, no chains order-isomorphic to the rational numbers; etc.


1991 ◽  
Vol 01 (02) ◽  
pp. 147-160 ◽  
Author(s):  
R. FREESE ◽  
G. GRÄTZE ◽  
E. T. SCHMIDT

The lattice of all complete congruence relations of a complete lattice is itself a complete lattice. In 1988, the second author announced the converse: every complete lattice L can be represented as the lattice of complete congruence relations of some complete lattice K. In this paper we improve this result by showing that K can be chosen to be a complete modular lattice.


1967 ◽  
Vol 19 ◽  
pp. 529-539 ◽  
Author(s):  
N. Heerema

Throughout this paper R and Rn will denote v-rings, that is, complete discrete rank-one valuation rings of characteristic zero, having a common residue field k of characteristic p. R is assumed unramified and Rn has ramification index n. Let π be a prime element in Rn. Then Rn = R[π], where π is a root of an Eisenstein polynomial ƒ = xn + pƒn-1 xn-1 + … + pƒ0 with coefficients in R and ƒ0 a unit. Thus Rn is inertially isomorphic to R[[x]]/ƒR[(x)], that is, the rings are isomorphic by a mapping which induces the identity mapping on the common residue field. R[[x]] represents the power series ring in the indeterminate x over R. In this paper we identify Rn with R[[x]]/ƒR[[x]], R with its natural embedding in Rn and π with x + ƒR[[x]].


Author(s):  
Paolo Zanardo

AbstractLet ℜ be the class of commutative rings R with comparable regular elements, that is, given two non zero-divisors in R, one divides the other. Applying the notion of V-valuation due to Harrison and Vitulli, we define the class V-val of V-valuated rings, which is contained in ℜ and contains the class of Manis valuation rings. We prove that these inclusions of classes are both proper. We investigate Prüfer rings inside ℜ, showing that there exist Prüfer rings which lie in ℜ but not in V-val; we prove that a ring R is a Prüfer valuation ring if and only if it is Prüfer and V-valuated, if and only if its lattice of regular ideals is a chain. Finally, we introduce and investigate the ideal I∞ of a ring R ∈ ℜ, which corresponds to the counterimage of ∞, whenever R is V-valuated.


1978 ◽  
Vol 30 (5) ◽  
pp. 1079-1086 ◽  
Author(s):  
H. H. Brungs ◽  
G. Törner

The following problem was the starting point for this investigation: Can every desarguesian affine Hjelmslev plane be embedded into a desarguesian projective Hjelmslev plane [8]? An affine Hjelmslev plane is called desarguesian if it can be coordinatized by a right chain ring R with a maximal ideal J(R) consisting of two-sided zero divisors. A projective Hjemslev plane is called desarguesian if the coordinate ring is in addition a left chain ring, i.e. a chain ring. This leads to the algebraic version of the above problem, namely the embedding of right chain rings into suitable chain rings. We can prove the following result.


2018 ◽  
Vol 68 (6) ◽  
pp. 1321-1326
Author(s):  
Marcin Łazarz

AbstractJ. Jakubík noted in [JAKUBÍK, J.:Modular Lattice of Locally Finite Length, Acta Sci. Math.37(1975), 79–82] that F. Šik in the unpublished manuscript proved that in the class of upper semimodular lattices of locally finite length, modularity is equivalent to the lack of cover-preserving sublattices isomorphic toS7. In the present paper we extend the scope of Šik’s theorem to the class of upper semimodular, upper continuous and strongly atomic lattices. Moreover, we show that corresponding result of Jakubík from [JAKUBÍK, J.:Modular Lattice of Locally Finite Length, Acta Sci. Math.37(1975), 79–82] cannot be strengthened is analogous way.


2005 ◽  
Vol 04 (03) ◽  
pp. 237-244
Author(s):  
MARK L. TEPLY ◽  
SEOG HOON RIM

For an ordinal α, a modular lattice L with 0 and 1 is α-atomic if L has dual Krull dimension α but each interval [0,x] with x < 1 has dual Krull dimension <α. The properties of α-atomic lattices are presented and applied to module theory. The endomorphism ring of certain types of α-atomic modules is a local domain and hence there is a Krull–Schmidt type theorem for those α-atomic modules.


Sign in / Sign up

Export Citation Format

Share Document