scholarly journals Mean Lipschitz spaces and bounded mean oscillation

1997 ◽  
Vol 41 (2) ◽  
pp. 214-230 ◽  
Author(s):  
Daniel Girela
2019 ◽  
Vol 107 (3) ◽  
pp. 381-391
Author(s):  
DINGHUAI WANG ◽  
JIANG ZHOU ◽  
ZHIDONG TENG

Let $0<\unicode[STIX]{x1D6FC}<n,1\leq p<q<\infty$ with $1/p-1/q=\unicode[STIX]{x1D6FC}/n$, $\unicode[STIX]{x1D714}\in A_{p,q}$, $\unicode[STIX]{x1D708}\in A_{\infty }$ and let $f$ be a locally integrable function. In this paper, it is proved that $f$ is in bounded mean oscillation $\mathit{BMO}$ space if and only if $$\begin{eqnarray}\sup _{B}\frac{|B|^{\unicode[STIX]{x1D6FC}/n}}{\unicode[STIX]{x1D714}^{p}(B)^{1/p}}\bigg(\int _{B}|f(x)-f_{\unicode[STIX]{x1D708},B}|^{q}\unicode[STIX]{x1D714}(x)^{q}\,dx\bigg)^{1/q}<\infty ,\end{eqnarray}$$ where $\unicode[STIX]{x1D714}^{p}(B)=\int _{B}\unicode[STIX]{x1D714}(x)^{p}\,dx$ and $f_{\unicode[STIX]{x1D708},B}=(1/\unicode[STIX]{x1D708}(B))\int _{B}f(y)\unicode[STIX]{x1D708}(y)\,dy$. We also show that $f$ belongs to Lipschitz space $Lip_{\unicode[STIX]{x1D6FC}}$ if and only if $$\begin{eqnarray}\sup _{B}\frac{1}{\unicode[STIX]{x1D714}^{p}(B)^{1/p}}\bigg(\int _{B}|f(x)-f_{\unicode[STIX]{x1D708},B}|^{q}\unicode[STIX]{x1D714}(x)^{q}\,dx\bigg)^{1/q}<\infty .\end{eqnarray}$$ As applications, we characterize these spaces by the boundedness of commutators of some operators on weighted Lebesgue spaces.


2011 ◽  
Vol 15 (4) ◽  
pp. 1749-1757
Author(s):  
Hong Rae Cho ◽  
Hyungwoon Koo ◽  
Ern Gun Kwon

2013 ◽  
Vol 88 (1) ◽  
pp. 143-157 ◽  
Author(s):  
SH. CHEN ◽  
S. PONNUSAMY ◽  
M. VUORINEN ◽  
X. WANG

AbstractWe first study the bounded mean oscillation of planar harmonic mappings. Then we establish a relationship between Lipschitz-type spaces and equivalent modulus of real harmonic mappings. Finally, we obtain sharp estimates on the Lipschitz number of planar harmonic mappings in terms of the bounded mean oscillation norm, which shows that the harmonic Bloch space is isomorphic to$BM{O}_{2} $as a Banach space.


2018 ◽  
Vol 105 (2) ◽  
pp. 201-228
Author(s):  
NGUYEN NGOC TRONG ◽  
LE XUAN TRUONG

Let ${\mathcal{L}}=-\unicode[STIX]{x1D6E5}+{\mathcal{V}}$ be a Schrödinger operator on $\mathbb{R}^{n},n\geq 3$, where ${\mathcal{V}}$ is a potential satisfying an appropriate reverse Hölder inequality. In this paper, we prove the boundedness of the Riesz transforms and the Littlewood–Paley square function associated with Schrödinger operators ${\mathcal{L}}$ in some new function spaces, such as new weighted Bounded Mean Oscillation (BMO) and weighted Lipschitz spaces, associated with ${\mathcal{L}}$. Our results extend certain well-known results.


2021 ◽  
Vol 19 (1) ◽  
pp. 515-530
Author(s):  
Xiao Yu ◽  
Pu Zhang ◽  
Hongliang Li

Abstract In this paper, we study the equivalent conditions for the boundedness of the commutators generated by the multilinear maximal function and the bounded mean oscillation (BMO) function on Morrey space. Moreover, the endpoint estimate for such operators on generalized Morrey spaces is also given.


2013 ◽  
Vol 95 (2) ◽  
pp. 158-168
Author(s):  
H.-Q. BUI ◽  
R. S. LAUGESEN

AbstractEvery bounded linear operator that maps ${H}^{1} $ to ${L}^{1} $ and ${L}^{2} $ to ${L}^{2} $ is bounded from ${L}^{p} $ to ${L}^{p} $ for each $p\in (1, 2)$, by a famous interpolation result of Fefferman and Stein. We prove ${L}^{p} $-norm bounds that grow like $O(1/ (p- 1))$ as $p\downarrow 1$. This growth rate is optimal, and improves significantly on the previously known exponential bound $O({2}^{1/ (p- 1)} )$. For $p\in (2, \infty )$, we prove explicit ${L}^{p} $ estimates on each bounded linear operator mapping ${L}^{\infty } $ to bounded mean oscillation ($\mathit{BMO}$) and ${L}^{2} $ to ${L}^{2} $. This $\mathit{BMO}$ interpolation result implies the ${H}^{1} $ result above, by duality. In addition, we obtain stronger results by working with dyadic ${H}^{1} $ and dyadic $\mathit{BMO}$. The proofs proceed by complex interpolation, after we develop an optimal dyadic ‘good lambda’ inequality for the dyadic $\sharp $-maximal operator.


Sign in / Sign up

Export Citation Format

Share Document