scholarly journals Some estimates for the commutators of multilinear maximal function on Morrey-type space

2021 ◽  
Vol 19 (1) ◽  
pp. 515-530
Author(s):  
Xiao Yu ◽  
Pu Zhang ◽  
Hongliang Li

Abstract In this paper, we study the equivalent conditions for the boundedness of the commutators generated by the multilinear maximal function and the bounded mean oscillation (BMO) function on Morrey space. Moreover, the endpoint estimate for such operators on generalized Morrey spaces is also given.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Takeshi Iida

The aim of this paper is to prove the boundedness of the Hardy-Littlewood maximal operator on weighted Morrey spaces and multilinear maximal operator on multiple weighted Morrey spaces. In particular, the result includes the Komori-Shirai theorem and the Iida-Sato-Sawano-Tanaka theorem for the Hardy-Littlewood maximal operator and multilinear maximal function.


2021 ◽  
Vol 24 (6) ◽  
pp. 1643-1669
Author(s):  
Natasha Samko

Abstract We study commutators of weighted fractional Hardy-type operators within the frameworks of local generalized Morrey spaces over quasi-metric measure spaces for a certain class of “radial” weights. Quasi-metric measure spaces may include, in particular, sets of fractional dimentsions. We prove theorems on the boundedness of commutators with CMO coefficients of these operators. Given a domain Morrey space 𝓛 p,φ (X) for the fractional Hardy operators or their commutators, we pay a special attention to the study of the range of the exponent q of the target space 𝓛 q,ψ (X). In particular, in the case of classical Morrey spaces, we provide the upper bound of this range which is greater than the known Adams exponent.


2020 ◽  
Vol 18 (1) ◽  
pp. 1317-1331
Author(s):  
Vagif Guliyev ◽  
Hatice Armutcu ◽  
Tahir Azeroglu

Abstract In this paper, we give a boundedness criterion for the potential operator { {\mathcal I} }^{\alpha } in the local generalized Morrey space L{M}_{p,\varphi }^{\{{t}_{0}\}}(\text{Γ}) and the generalized Morrey space {M}_{p,\varphi }(\text{Γ}) defined on Carleson curves \text{Γ} , respectively. For the operator { {\mathcal I} }^{\alpha } , we establish necessary and sufficient conditions for the strong and weak Spanne-type boundedness on L{M}_{p,\varphi }^{\{{t}_{0}\}}(\text{Γ}) and the strong and weak Adams-type boundedness on {M}_{p,\varphi }(\text{Γ}) .


2019 ◽  
Vol 21 (05) ◽  
pp. 1850044
Author(s):  
Chao Zhang

In this paper, we prove the optimal generalized Morrey estimates for the spatial gradient of the solutions obtained by limits of approximations (SOLA) for a class of parabolic problems with right-hand side measure in a very general irregular domain. The nonlinearity is assumed to be merely measurable only in the time variable [Formula: see text] and belongs to the small bounded mean oscillation (BMO) class as functions of the spatial variable [Formula: see text].


2002 ◽  
Vol 33 (4) ◽  
pp. 335-340
Author(s):  
Eridani Eridani

In this paper we extend Nakai's result on the boundedness of a generalized fractional integral operator from a generalized Morrey space to another generalized Morrey or Campanato space.


2014 ◽  
Vol 58 (1) ◽  
pp. 199-218 ◽  
Author(s):  
Vagif S. Guliyev ◽  
Lubomira G. Softova

AbstractWe prove continuity in generalized parabolic Morrey spacesof sublinear operators generated by the parabolic Calderón—Zygmund operator and by the commutator of this operator with bounded mean oscillation (BMO) functions. As a consequence, we obtain a global-regularity result for the Cauchy—Dirichlet problem for linear uniformly parabolic equations with vanishing mean oscillation (VMO) coefficients.


2021 ◽  
Author(s):  
Tair Gadjiev ◽  
Konul Suleymanova

We study the regularity of the solutions of the Cauchy-Dirichlet problem for linear uniformly parabolic equations of higher order with vanishing mean oscillation (VMO) coefficients. We prove continuity in generalized parabolic Morrey spaces Mp,φ of sublinear operators generated by the parabolic Calderon-Zygmund operator and by the commutator of this operator with bounded mean oscillation (BMO) functions. We obtain strong solution belongs to the generalized Sobolev-Morrey space Wp,φm,1∘Q. Also we consider elliptic equation in unbounded domains.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Guanghui Lu

Let X , d , μ be a nonhomogeneous metric measure space satisfying the upper doubling and geometrically doubling conditions in the sense of Hytönen. In this setting, the author proves that parameter θ -type Marcinkiewicz integral M θ ρ is bounded on the weighted generalized Morrey space L p , ϕ , τ ω for p ∈ 1 , ∞ . Furthermore, the boudedness of M θ ρ on weak weighted generalized Morrey space W L p , ϕ , τ ω is also obtained.


2014 ◽  
Vol 96 (3) ◽  
pp. 396-428
Author(s):  
LIN TANG

AbstractWe consider the weighted $L_p$ solvability for divergence and nondivergence form parabolic equations with partially bounded mean oscillation (BMO) coefficients and certain positive potentials. As an application, global regularity in Morrey spaces for divergence form parabolic operators with partially BMO coefficients on a bounded domain is established.


Sign in / Sign up

Export Citation Format

Share Document