Coefficient identities derived from expansions of elementary symmetric function products in terms of power sums

1961 ◽  
Vol 28 (1) ◽  
pp. 89-106 ◽  
Author(s):  
Jack Levine
1969 ◽  
Vol 12 (5) ◽  
pp. 615-623 ◽  
Author(s):  
K.V. Menon

The generating series for the elementary symmetric function Er, the complete symmetric function Hr, are defined byrespectively.


1968 ◽  
Vol 20 ◽  
pp. 739-748 ◽  
Author(s):  
Peter Botta

Let Mm(F) be the vector space of m-square matrices X — (Xij), i,j= 1, … , m over a field ƒ;ƒ a function on Mm(F) to some set R. It is of interest to determine the structure of the linear maps T: Mm(F) → Mm(F) that preserve the values of the function ƒ (i.e., ƒ(T(x)) — ƒ(x) for all X). For example, if we take ƒ(x) to be the rank of X, we are asking for a determination of the types of linear operations on matrices that preserve rank (6). Other classical invariants that may be taken for ƒ are the determinant, the set of eigenvalues, and the rth elementary symmetric function of the eigenvalues.


1959 ◽  
Vol 11 ◽  
pp. 383-396 ◽  
Author(s):  
Marvin Marcus ◽  
Roger Purves

In this paper we examine the structure of certain linear transformations T on the algebra of w-square matrices Mn into itself. In particular if A ∈ Mn let Er(A) be the rth elementary symmetric function of the eigenvalues of A. Our main result states that if 4 ≤ r ≤ n — 1 and Er(T(A)) = Er(A) for A ∈ Mn then T is essentially (modulo taking the transpose and multiplying by a constant) a similarity transformation:No such result as this is true for r = 1,2 and we shall exhibit certain classes of counterexamples. These counterexamples fail to work for r = 3 and the structure of those T such that E3(T(A)) = E3(A) for all ∈ Mn is unknown to us.


1972 ◽  
Vol 15 (1) ◽  
pp. 133-135 ◽  
Author(s):  
K. V. Menon

Let Er denote the rth elementary symmetric function on α1 α2,…,αm which is defined by1E0 = 1 and Er=0(r>m).We define the rth symmetric mean by2where denote the binomial coefficient. If α1 α2,…,αm are positive reals thenwe have two well-known inequalities3and4In this paper we consider a generalization of these inequalities. The inequality (4) is known as Newton's inequality which contains the arithmetic and geometric mean inequality.


Sign in / Sign up

Export Citation Format

Share Document