Existence results for a semipositone singular fractional differential equation

2019 ◽  
Vol 49 (8) ◽  
pp. 2495-2512
Author(s):  
Rim Bourguiba ◽  
Faten Toumi
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Dumitru Baleanu ◽  
Khadijeh Ghafarnezhad ◽  
Shahram Rezapour ◽  
Mehdi Shabibi

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Teng Ren ◽  
Helu Xiao ◽  
Zhongbao Zhou ◽  
Xinguang Zhang ◽  
Lining Xing ◽  
...  

In this paper, we focus on a class of singular fractional differential equation, which arises from many complex processes such as the phenomenon and diffusion interaction of the ecological-economic-social complex system. By means of the iterative technique, the uniqueness and nonexistence results of positive solutions are established under the condition concerning the spectral radius of the relevant linear operator. In addition, the iterative scheme that converges to the unique solution is constructed without request of any monotonicity, and the convergence analysis and error estimate of unique solution are obtained. The numerical example and simulation are also given to demonstrate the application of the main results and the effectiveness of iterative process.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Yanning Wang ◽  
Jianwen Zhou ◽  
Yongkun Li

Using conformable fractional calculus on time scales, we first introduce fractional Sobolev spaces on time scales, characterize them, and define weak conformable fractional derivatives. Second, we prove the equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, uniform convexity, and compactness of some imbeddings, which can be regarded as a novelty item. Then, as an application, we present a recent approach via variational methods and critical point theory to obtain the existence of solutions for ap-Laplacian conformable fractional differential equation boundary value problem on time scaleT:  Tα(Tαup-2Tα(u))(t)=∇F(σ(t),u(σ(t))),Δ-a.e.  t∈a,bTκ2,u(a)-u(b)=0,Tα(u)(a)-Tα(u)(b)=0,whereTα(u)(t)denotes the conformable fractional derivative ofuof orderαatt,σis the forward jump operator,a,b∈T,  0<a<b,  p>1, andF:[0,T]T×RN→R. By establishing a proper variational setting, we obtain three existence results. Finally, we present two examples to illustrate the feasibility and effectiveness of the existence results.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Kemei Zhang

In this paper, we consider the following higher-order semipositone nonlocal Riemann-Liouville fractional differential equation D0+αx(t)+f(t,x(t),D0+βx(t))+e(t)=0,  0<t<1,D0+βx(0)=D0+β+1x(0)=⋯=D0+n+β-2x(0)=0, and D0+βx(1)=∑i=1m-2ηiD0+βx(ξi), where D0+α and D0+β are the standard Riemann-Liouville fractional derivatives. The existence results of positive solution are given by Guo-krasnosel’skii fixed point theorem and Schauder’s fixed point theorem.


Sign in / Sign up

Export Citation Format

Share Document