Existence of positive solution for singular fractional differential equation

2009 ◽  
Vol 215 (7) ◽  
pp. 2761-2767 ◽  
Author(s):  
Zhanbing Bai ◽  
Tingting Qiu
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Dumitru Baleanu ◽  
Khadijeh Ghafarnezhad ◽  
Shahram Rezapour ◽  
Mehdi Shabibi

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jingjing Tan ◽  
Meixia Li ◽  
Aixia Pan

We prove that there are unique positive solutions for a new kind of fractional differential equation with a negatively perturbed term boundary value problem. Our methods rely on an iterative algorithm which requires constructing an iterative scheme to approximate the solution. This allows us to calculate the estimation of the convergence rate and the approximation error.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Teng Ren ◽  
Helu Xiao ◽  
Zhongbao Zhou ◽  
Xinguang Zhang ◽  
Lining Xing ◽  
...  

In this paper, we focus on a class of singular fractional differential equation, which arises from many complex processes such as the phenomenon and diffusion interaction of the ecological-economic-social complex system. By means of the iterative technique, the uniqueness and nonexistence results of positive solutions are established under the condition concerning the spectral radius of the relevant linear operator. In addition, the iterative scheme that converges to the unique solution is constructed without request of any monotonicity, and the convergence analysis and error estimate of unique solution are obtained. The numerical example and simulation are also given to demonstrate the application of the main results and the effectiveness of iterative process.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Rui Yue ◽  
Jian-Ping Sun ◽  
Shuqin Zhang

We consider the following boundary value problem of nonlinear fractional differential equation:(CD0+αu)(t)=f(t,u(t)),  t∈[0,1],  u(0)=0,   u′(0)+u′′(0)=0,  u′(1)+u′′(1)=0, whereα∈(2,3]is a real number, CD0+αdenotes the standard Caputo fractional derivative, andf:[0,1]×[0,+∞)→[0,+∞)is continuous. By using the well-known Guo-Krasnoselskii fixed point theorem, we obtain the existence of at least one positive solution for the above problem.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Changyou Wang ◽  
Haiqiang Zhang ◽  
Shu Wang

This paper is concerned with a nonlinear fractional differential equation involving Caputo derivative. By constructing the upper and lower control functions of the nonlinear term without any monotone requirement and applying the method of upper and lower solutions and the Schauder fixed point theorem, the existence and uniqueness of positive solution for the initial value problem are investigated. Moreover, the existence of maximal and minimal solutions is also obtained.


Sign in / Sign up

Export Citation Format

Share Document