Cavernous Malformation of the Trigeminal Nerve Manifesting with Trigeminal Neuralgia: Case Report

Neurosurgery ◽  
2005 ◽  
Vol 56 (3) ◽  
pp. E623-E623 ◽  
Author(s):  
Vivek R. Deshmukh ◽  
Jonathan S. Hott ◽  
Peyman Tabrizi ◽  
Peter Nakaji ◽  
Iman Feiz-Erfan ◽  
...  

Abstract OBJECTIVE AND IMPORTANCE: We describe a patient with a cavernous malformation within the trigeminal nerve at the nerve root entry zone who presented with trigeminal neuralgia. CLINICAL PRESENTATION: A 52-year-old woman sought treatment after experiencing dizziness and lancinating left facial pain for almost a year. Neurological examination revealed diminished sensation in the distribution of the trigeminal nerve on the left. Magnetic resonance imaging demonstrated a minimally enhancing lesion affecting the trigeminal nerve. INTERVENTION: The patient underwent a retrosigmoid craniotomy. At the nerve root entry zone, the trigeminal nerve was edematous with hemosiderin staining. The lesion, which was resected with microsurgical technique, had the appearance of a cavernous malformation on gross and histological examination. The patient's pain improved significantly after resection. CONCLUSION: Cavernous malformations can afflict the trigeminal nerve and cause trigeminal neuralgia. Microsurgical excision can be performed safely and is associated with improvement in symptoms.

1980 ◽  
Vol 52 (3) ◽  
pp. 381-386 ◽  
Author(s):  
Stephen J. Haines ◽  
Peter J. Jannetta ◽  
David S. Zorub

✓ The vascular relationships of the trigeminal nerve root entry zone were examined bilaterally in 20 cadavers of individuals known to be free of facial pain. Fourteen of 40 nerves made contact with an artery, but only four of these showed evidence of compression or distortion of the nerve. In addition, the vascular relationships of 40 trigeminal nerves exposed surgically for treatment of trigeminal neuralgia were studied, and 31 nerves showed compression by adjacent arteries. Venous compression was seen in four of the cadaver nerves and in eight nerves from patients with trigeminal neuralgia. These data support the hypothesis that arterial compression of the trigeminal nerve is associated with trigeminal neuralgia.


2019 ◽  
Vol 19 (1) ◽  
pp. E50-E51 ◽  
Author(s):  
Karl R Abi-Aad ◽  
Evelyn Turcotte ◽  
Devi P Patra ◽  
Matthew E Welz ◽  
Tanmoy Maiti ◽  
...  

Abstract This is the case of an 86-yr-old gentleman who presented with left facial pain exacerbated by eating, drinking, chewing, and shaving (distribution: V2, V3). The patient was diagnosed with trigeminal neuralgia and was refractory to medications. Imaging showed a superior cerebellar artery (SCA) loop adjacent to the trigeminal nerve root entry zone and a decision to perform a microvascular decompression of the fifth nerve was presented to the patient. After patient informed consent was obtained, a standard 3 cm × 3 cm retrosigmoid craniotomy was performed with the patient in a supine head turned position and in reverse Trendelenburg. The arachnoid bands tethering the SCA to the trigeminal nerve were sharply divided. A slit was then made in the tentorium and a 3 mm fenestrated clip was then used to secure the transposed SCA away from the trigeminal nerve. The SCA proximal to this was slightly patulous in its course so a small amount of a fibrin glue was also used to secure the more proximal SCA to the tentorium. The patient was symptom-free postoperatively and no longer required medical therapy. Additionally, imaging was consistent with adequate separation of the nerve from adjacent vessels.1-5


2011 ◽  
Vol 16 (5) ◽  
pp. 357-359 ◽  
Author(s):  
Naoki Kato ◽  
Toshihide Tanaka ◽  
Hiroki Sakamoto ◽  
Takao Arai ◽  
Yuzuru Hasegawa ◽  
...  

Trigeminal neuralgia is lancinating pain of a few seconds duration triggered by minor sensory stimuli such as speaking, chewing or even a breeze on the face. Vascular compression of the trigeminal nerve at the root entry zone and other vessels has been implicated in its cause. Despite the initial success of medical treatment in some cases, however, many patients become refractory over time and eventually require surgical intervention. This report describes a case involving a 62-year-old woman who presented with right orbital pain provoked by, among others, exercise and cold. Medication proved to be ineffective and, after magnetic resonance imaging, microvascular decompression and surgical observation, the diagnosis became clearer. The case highlights the importance of preoperative imaging and careful intraoperative findings to determine whether variant arteries are responsible for trigeminal neuralgia.A patient who presented with trigeminal neuralgia associated with a persistent primitive trigeminal artery (PPTA) is presented. A 62-year-old woman suffering from right orbital pain was admitted to the hospital. Medical treatment for three months was ineffective, and her neuralgia had deteriorated and gradually spread in the maxillary division. Magnetic resonance imaging demonstrated the flow void signal attached to the right trigeminal nerve. Thus, microvascular decompression was performed. The superior cerebellar artery was the responsible artery, and it was transposed to decompress the trigeminal nerve. After this manoeuvre, an artery was identified running parallel to the trigeminal nerve toward Meckel’s cave. The artery, which turned out to be a PPTA, communicated with the basilar artery. The PPTA was carefully observed, and it was found not to be the artery causing the neuralgia because it did not compress the nerve at surgical observation. No additional procedure between the PPTA and the trigeminal nerve was performed. The patient’s symptom improved dramatically following surgery, and her postoperative course was uneventful. Postoperative three-dimensional computed tomography showed the PPTA. The findings in the present case suggest that transposition of the responsible artery effectively decompresses the root entry zone and assists in determining whether the PPTA is affecting the trigeminal nerve.


2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Zafar Ali Khan Ali Khan ◽  
Shammas Raza Khan Raza Khan ◽  
Tariq Mehmood ◽  
Chaudhary Umar Asghar ◽  
Naseer Ahmed

Objective: Patients with Trigeminal Neuralgia often consults a dentist for relief of their symptoms as the pain seems to be arising from teeth and allied oral structures. Basilar artery Dolichoectasia is an unusual and very rare cause of secondary Trigeminal Neuralgia as it compresses the Trigeminal nerve Root Entry Zone. Case reports: We report three cases of Trigeminal Neuralgia caused by Basilar artery Dolichoectasia compression. The corneal reflex was found absent in all three of the cases along with mild neurological deficits in one case. Multiplanar T1/T2W images through the brain disclosed an aberrant, cirsoid (S-shaped) and torturous Dolichoectasia of basilar artery offending the Trigeminal nerve Root Entry Zone. Discussion: Based on these findings we propose a protocol for general dentist for diagnosis of patients with trigeminal neuralgia and timely exclusion of secondary intracranial causes. Conclusion: General dentists and oral surgeons ought to consider this diagnosis in patients presenting with chronic facial pain especially pain mimicking neuralgia with loss of corneal reflex or other neurosensory deficit on the face along with nighttime pain episodes. Timely and accurate diagnosis and prompt referral to a concerned specialist can have an enormous impact on patient survival rate in such cases. KEYWORDS Basilar artery; Cirsoid dolichoectasia; Corneal reflex; Trigeminal neuralgia.


2002 ◽  
Vol 97 (4) ◽  
pp. 874-880 ◽  
Author(s):  
Richard J. Edwards ◽  
Yvonne Clarke ◽  
Shelley A. Renowden ◽  
Hugh B. Coakham

Object. Within a series of 341 consecutive patients who underwent posterior fossa surgery for trigeminal neuralgia (TN), in five the cause was found to be a microarteriovenous malformation (micro-AVM) located in the region of the trigeminal nerve root entry zone (REZ). The surgical management and clinical outcomes of these cases are presented. Methods. Patients were identified from a prospectively collected database of all cases of TN treated at one institution between 1980 and 2000. Presentation was clinically indistinguishable from TN caused by vascular compression. Preoperative imaging, including computerized tomography scanning (two cases) and magnetic resonance (MR) imaging and MR angiography (three cases), failed to demonstrate an AVM except for one case in which multiple abnormal vessels were identified in the trigeminal REZ on an MR image obtained using a 1.5-tesla magnet. All patients underwent a standard retromastoid craniotomy. In all cases a small AVM embedded in the trigeminal REZ was identified and completely excised, with preservation of the trigeminal nerve. All patients experienced immediate relief of pain following surgery. Postoperatively, in one patient a small pontine hematoma developed, resulting in permanent trigeminal nerve anesthesia in the V2 and V3 divisions. All patients were free from pain at a mean follow-up period of 30 months. Conclusions. These rare lesions are usually angiographically occult, but may sometimes be identifiable on high-resolution MR images. Total microsurgical resection with nerve preservation is possible, although operative complications are relatively common, reflecting the intimate association between these lesions and the pons. Complete resection is advised not only for symptom relief, but also to eliminate the theoretical risk of pontine hemorrhage.


Neurocirugía ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 105-114
Author(s):  
Rafael Medélez-Borbonio ◽  
Alexander Perdomo-Pantoja ◽  
Alejandro Apolinar Serrano-Rubio ◽  
Colson Tomberlin ◽  
Rogelio Revuelta-Gutiérrez ◽  
...  

Neurosurgery ◽  
2006 ◽  
Vol 59 (2) ◽  
pp. 354-359 ◽  
Author(s):  
Selçuk Peker ◽  
Özlem Kurtkaya ◽  
İbrahim Üzün ◽  
M Necmettin Pamir

Abstract OBJECTIVE: The aim of this study was to evaluate the microanatomy of the central myelin-peripheral myelin transitional zone (TZ) in trigeminal nerves from cadavers. METHODS: One hundred trigeminal nerves from 50 cadaver heads were examined. The cisternal portion of the nerve (from the pons to Meckel's cave) was measured. Horizontal sections were stained and photographed. The photomicrographs were used to measure the extent of central myelin on the medial and lateral aspects of the nerve and to classify TZ shapes. RESULTS: The cisternal portions of the specimens ranged from 8 to 15 mm long (mean, 12.3 mm; median, 11.9 mm). The data from the photomicrographs revealed that the extent of central myelin (distance from pons to TZ) on the medial aspect of the nerve (range, 0.1–2.5 mm; mean, 1.13 mm; median, 1 mm) was shorter than that on the lateral aspect (range, 0.17–6.75 mm; mean, 2.47 mm; median, 2.12 mm). CONCLUSION: The data definitively prove that the root entry zone (REZ, nerve-pons junction) and TZ of the trigeminal nerve are distinct sites and that these terms should never be used interchangeably. The measurements showed that the central myelin occupies only the initial one-fourth of the trigeminal nerve length. If trigeminal neuralgia is caused exclusively by vascular compression of the central myelin, the problem vessel would always have to be located in this region. However, it is well known that pain from trigeminal neuralgia can resolve after vascular decompression at more distal sites. This suggests that the effects of surgical decompression are caused by another mechanism.


1996 ◽  
Vol 84 (5) ◽  
pp. 818-825 ◽  
Author(s):  
Fred G. Barker ◽  
Peter J. Jannetta ◽  
Ramesh P. Babu ◽  
Spiros Pomonis ◽  
David J. Bissonette ◽  
...  

✓ During a 20-year period, 26 patients with typical symptoms of trigeminal neuralgia were found to have posterior fossa tumors at operation. These cases included 14 meningiomas, eight acoustic neurinomas, two epidermoid tumors, one angiolipoma, and one ependymoma. The median patient age was 60 years and 69% of the patients were women. Sixty-five percent of the symptoms were left sided. The median preoperative duration of symptoms was 5 years. The distribution of pain among the three divisions of the trigeminal nerve was similar to that found in patients with trigeminal neuralgia who did not have tumors; however, more divisions tended to be involved in the tumor patients. The mean postoperative follow-up period was 9 years. At operation, the root entry zone of the trigeminal nerve was examined for vascular cross-compression in 21 patients. Vessels compressing the nerve at the root entry zone were observed in all patients examined. Postoperative pain relief was frequent and long lasting. Using Kaplan—Meier methods the authors estimated excellent relief in 81% of the patients 10 years postoperatively, with partial relief in an additional 4%.


Neurosurgery ◽  
2009 ◽  
Vol 65 (5) ◽  
pp. 958-961 ◽  
Author(s):  
Gregory M. Helbig ◽  
James D. Callahan ◽  
Aaron A. Cohen-Gadol

Abstract OBJECTIVE Trigeminal neuralgia is often caused by compression, demyelination, and injury of the trigeminal nerve root entry zone by an adjacent artery and/or vein. Previously described variations of the nerve-vessel relationship note external nerve compression. We offer a detailed classification of intraneural vessels that travel through the trigeminal nerve and safe, effective surgical management. CLINICAL PRESENTATION We report 3 microvascular decompression operations for medically refractory trigeminal neuralgia during which the surgeon encountered a vein crossing through the trigeminal nerve. Two types of intraneural veins are described: type 1, in which the vein travels between the motor and sensory branches of the trigeminal nerve (1 patient), and type 2, in which the vein bisects the sensory branch (portio major) (2 patients). INTERVENTION We recommend sacrificing the intraneural vein between the motor and sensory branches if the vein is small (most likely type 1). If the intraneural vein is large and bisects the sensory branch (most likely type 2), vein mobilization can be achieved, but often requires extensive dissection through the nerve. Because this maneuver may lead to trigeminal nerve injury and result in uncomfortable neuropathy and numbness (including corneal hypoesthesia), we recommend against mobilization of the vein through the nerve, suggesting instead, consideration of a selective trigeminal nerve rhizotomy. CONCLUSION Because aggressive dissection of intraneural vessels can lead to higher than normal complication rates, preoperative knowledge of vein-trigeminal nerve variants is crucial for intraoperative success.


Sign in / Sign up

Export Citation Format

Share Document