scholarly journals INITIAL SURGICAL EXPERIENCE WITH A DENSE CORTICAL MICROARRAY IN EPILEPTIC PATIENTS UNDERGOING CRANIOTOMY FOR SUBDURAL ELECTRODE IMPLANTATION

Neurosurgery ◽  
2009 ◽  
Vol 64 (3) ◽  
pp. 540-545 ◽  
Author(s):  
Allen Waziri ◽  
Catherine A. Schevon ◽  
Joshua Cappell ◽  
Ronald G. Emerson ◽  
Guy M. McKhann ◽  
...  

Abstract OBJECTIVE Detailed investigations of cortical physiology require the ability to record brain electrical activity at a submillimeter scale. Standard intracranial electrodes result in significant averaging of potentials generated by large numbers of neurons. In contrast, microelectrode arrays allow for recording of local field potentials and single-unit activity. We describe our initial surgical experience with the NeuroPort microelectrode array (Cyberkinetics Neurotechnology Systems, Inc., Salt Lake City, UT) in a series of patients undergoing subdural electrode implantation for epilepsy monitoring. METHODS Seven patients were implanted with and underwent semichronic recording from the NeuroPort array during standard subdural electrode monitoring for epilepsy. The electrode was placed according to company specifications in putative noneloquent epileptogenic cortex. After the monitoring period, microelectrode arrays were removed during explantation of subdural electrodes and resection of epileptogenic tissue. RESULTS Successful implantation of the microelectrode array was achieved in all patients, with minor operative difficulties. Robust and durable local field potentials and single-unit recordings were obtained from all implanted individuals. Implantation times ranged from 3 to 28 days; histological analysis of implanted tissue demonstrated no significant tissue injury or inflammatory response. There were no neurological complications or infections associated with electrode implantation or prolonged monitoring. Two patients developed postresection issues with wound healing at the site of scalp egress, with 1 requiring operative wound revision. CONCLUSION Our experience demonstrates that semichronic microelectroencephalographic recording can be safely and effectively achieved using the NeuroPort microarray. Although significant tissue injury, infection, or cerebrospinal fluid leak was not encountered, the large profile of the connection pedestal resulted in suboptimal wound closure and healing in several patients. We predict that this problem will be easily addressed in second-generation devices.


2017 ◽  
Vol 20 (5) ◽  
pp. 471-477 ◽  
Author(s):  
Arun Chockalingam ◽  
Abigail Belasen ◽  
Nita Chen ◽  
Adolfo Ramirez-Zamora ◽  
Youngwon Youn ◽  
...  




2015 ◽  
Vol 114 (3) ◽  
pp. 1500-1512 ◽  
Author(s):  
Sagi Perel ◽  
Patrick T. Sadtler ◽  
Emily R. Oby ◽  
Stephen I. Ryu ◽  
Elizabeth C. Tyler-Kabara ◽  
...  

A diversity of signals can be recorded with extracellular electrodes. It remains unclear whether different signal types convey similar or different information and whether they capture the same or different underlying neural phenomena. Some researchers focus on spiking activity, while others examine local field potentials, and still others posit that these are fundamentally the same signals. We examined the similarities and differences in the information contained in four signal types recorded simultaneously from multielectrode arrays implanted in primary motor cortex: well-isolated action potentials from putative single units, multiunit threshold crossings, and local field potentials (LFPs) at two distinct frequency bands. We quantified the tuning of these signal types to kinematic parameters of reaching movements. We found 1) threshold crossing activity is not a proxy for single-unit activity; 2) when examined on individual electrodes, threshold crossing activity more closely resembles LFP activity at frequencies between 100 and 300 Hz than it does single-unit activity; 3) when examined across multiple electrodes, threshold crossing activity and LFP integrate neural activity at different spatial scales; and 4) LFP power in the “beta band” (between 10 and 40 Hz) is a reliable indicator of movement onset but does not encode kinematic features on an instant-by-instant basis. These results show that the diverse signals recorded from extracellular electrodes provide somewhat distinct and complementary information. It may be that these signal types arise from biological phenomena that are partially distinct. These results also have practical implications for harnessing richer signals to improve brain-machine interface control.



2019 ◽  
Vol 5 (6) ◽  
pp. 065017
Author(s):  
Joshua O Usoro ◽  
Ellen Shih ◽  
Bryan J Black ◽  
Rashed T Rihani ◽  
Justin Abbott ◽  
...  


2018 ◽  
Vol 63 (3) ◽  
pp. 301-315 ◽  
Author(s):  
Richárd Fiáth ◽  
Katharina T. Hofer ◽  
Vivien Csikós ◽  
Domonkos Horváth ◽  
Tibor Nánási ◽  
...  

Abstract Stereo-electroencephalography depth electrodes, regularly implanted into drug-resistant patients with focal epilepsy to localize the epileptic focus, have a low channel count (6–12 macro- or microelectrodes), limited spatial resolution (0.5–1 cm) and large contact area of the recording sites (~mm2). Thus, they are not suited for high-density local field potential and multiunit recordings. In this paper, we evaluated the long-term electrophysiological recording performance and histocompatibility of a neural interface consisting of 32 microelectrodes providing a physical shape similar to clinical devices. The cylindrically-shaped depth probes made of polyimide (PI) were chronically implanted for 13 weeks into the brain of rats, while cortical or thalamic activity (local field potentials, single-unit and multi-unit activity) was recorded regularly to monitor the temporal change of several features of the electrophysiological performance. To examine the tissue reaction around the probe, neuron-selective and astroglia-selective immunostaining methods were applied. Stable single-unit and multi-unit activity were recorded for several weeks with the implanted depth probes and a weak or moderate tissue reaction was found around the probe track. Our data on biocompatibility presented here and in vivo experiments in non-human primates provide a strong indication that this type of neural probe can be applied in stereo-electroencephalography recordings of up to 2 weeks in humans targeting the localization of epileptic foci providing an increased spatial resolution and the ability to monitor local field potentials and neuronal spiking activity.



2016 ◽  
Vol 10 ◽  
Author(s):  
Ilknur Telkes ◽  
Joohi Jimenez-Shahed ◽  
Ashwin Viswanathan ◽  
Aviva Abosch ◽  
Nuri F. Ince


Sign in / Sign up

Export Citation Format

Share Document