local field potentials
Recently Published Documents


TOTAL DOCUMENTS

628
(FIVE YEARS 135)

H-INDEX

50
(FIVE YEARS 5)

Author(s):  
Vinay Parameshwarappa ◽  
Laurent Pezard ◽  
Arnaud Jean Norena

In the auditory modality, noise trauma has often been used to investigate cortical plasticity as it causes cochlear hearing loss. One limitation of these past studies, however, is that the effects of noise trauma have been mostly documented at the granular layer, which is the main cortical recipient of thalamic inputs. Importantly, the cortex is composed of six different layers each having its own pattern of connectivity and specific role in sensory processing. The present study aims at investigating the effects of acute and chronic noise trauma on the laminar pattern of spontaneous activity in primary auditory cortex of the anesthetized guinea pig. We show that spontaneous activity is dramatically altered across cortical layers after acute and chronic noise-induced hearing loss. First, spontaneous activity was globally enhanced across cortical layers, both in terms of firing rate and amplitude of spike-triggered average of local field potentials. Second, current source density on (spontaneous) spike-triggered average of local field potentials indicates that current sinks develop in the supra- and infragranular layers. These latter results suggest that supragranular layers become a major input recipient and that the propagation of spontaneous activity over a cortical column is greatly enhanced after acute and chronic noise-induced hearing loss. We discuss the possible mechanisms and functional implications of these changes.


2021 ◽  
pp. 288-299
Author(s):  
Marcos I. Fabietti ◽  
Mufti Mahmud ◽  
Ahmad Lotfi ◽  
Alberto Averna ◽  
David Guggenmos ◽  
...  

2021 ◽  
Vol 14 (6) ◽  
pp. 1682-1683
Author(s):  
Ivan Alekseichuk ◽  
Catarina Saiote ◽  
Seth Koenig ◽  
Miles Wischnewski ◽  
Taylor Berger ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Alexander J. Baumgartner ◽  
Clete A. Kushida ◽  
Michael O. Summers ◽  
Drew S. Kern ◽  
Aviva Abosch ◽  
...  

Sleep disturbances, specifically decreases in total sleep time and sleep efficiency as well as increased sleep onset latency and wakefulness after sleep onset, are highly prevalent in patients with Parkinson's disease (PD). Impairment of sleep significantly and adversely impacts several comorbidities in this patient population, including cognition, mood, and quality of life. Sleep disturbances and other non-motor symptoms of PD have come to the fore as the effectiveness of advanced therapies such as deep brain stimulation (DBS) optimally manage the motor symptoms. Although some studies have suggested that DBS provides benefit for sleep disturbances in PD, the mechanisms by which this might occur, as well as the optimal stimulation parameters for treating sleep dysfunction, remain unknown. In patients treated with DBS, electrophysiologic recording from the stimulating electrode, in the form of local field potentials (LFPs), has led to the identification of several findings associated with both motor and non-motor symptoms including sleep. For example, beta frequency (13–30 Hz) oscillations are associated with worsened bradykinesia while awake and decrease during non-rapid eye movement sleep. LFP investigation of sleep has largely focused on the subthalamic nucleus (STN), though corresponding oscillatory activity has been found in the globus pallidus internus (GPi) and thalamus as well. LFPs are increasingly being recognized as a potential biomarker for sleep states in PD, which may allow for closed-loop optimization of DBS parameters to treat sleep disturbances in this population. In this review, we discuss the relationship between LFP oscillations in STN and the sleep architecture of PD patients, current trends in utilizing DBS to treat sleep disturbance, and future directions for research. In particular, we highlight the capability of novel technologies to capture and record LFP data in vivo, while patients continue therapeutic stimulation for motor symptoms. These technological advances may soon allow for real-time adaptive stimulation to treat sleep disturbances.


Sign in / Sign up

Export Citation Format

Share Document