scholarly journals On Rice's Formula for Stationary Multivariate Piecewise Smooth Processes

2012 ◽  
Vol 49 (2) ◽  
pp. 351-363 ◽  
Author(s):  
K. Borovkov ◽  
G. Last

Let X = {Xt: t ≥ 0} be a stationary piecewise continuous Rd-valued process that moves between jumps along the integral curves of a given continuous vector field, and let S ⊂ Rd be a smooth surface. The aim of this paper is to derive a multivariate version of Rice's formula, relating the intensity of the point process of (localized) continuous crossings of S by X to the distribution of X0. Our result is illustrated by examples relating to queueing networks and stress release network models.

2012 ◽  
Vol 49 (02) ◽  
pp. 351-363
Author(s):  
K. Borovkov ◽  
G. Last

LetX= {Xt:t≥ 0} be a stationary piecewise continuousRd-valued process that moves between jumps along the integral curves of a given continuous vector field, and letS⊂Rdbe a smooth surface. The aim of this paper is to derive a multivariate version of Rice's formula, relating the intensity of the point process of (localized) continuous crossings ofSbyXto the distribution ofX0. Our result is illustrated by examples relating to queueing networks and stress release network models.


Extremes ◽  
2011 ◽  
Vol 14 (2) ◽  
pp. 153-155
Author(s):  
Holger Rootzén ◽  
Ross Leadbetter

Author(s):  
Ming Zhang

Real world financial data is often discontinuous and non-smooth. Accuracy will be a problem, if we attempt to use neural networks to simulate such functions. Neural network group models can perform this function with more accuracy. Both Polynomial Higher Order Neural Network Group (PHONNG) and Trigonometric polynomial Higher Order Neural Network Group (THONNG) models are studied in this chapter. These PHONNG and THONNG models are open box, convergent models capable of approximating any kind of piecewise continuous function to any degree of accuracy. Moreover, they are capable of handling higher frequency, higher order nonlinear, and discontinuous data. Results obtained using Polynomial Higher Order Neural Network Group and Trigonometric polynomial Higher Order Neural Network Group financial simulators are presented, which confirm that PHONNG and THONNG group models converge without difficulty, and are considerably more accurate (0.7542% - 1.0715%) than neural network models such as using Polynomial Higher Order Neural Network (PHONN) and Trigonometric polynomial Higher Order Neural Network (THONN) models.


1986 ◽  
Vol 33 (3) ◽  
pp. 407-418 ◽  
Author(s):  
Nikolaos S. Papageorgiou

We consider the Cauchy problem x (t) = f (t,x (t)), x (0) = x0 in a nonreflexive Banach space X and for f: T × X → X a weakly continuous vector field. Using a compactness hypothesis involving a weak measure of noncompactness we prove an existence result that generalizes earlier theorems by Chow-Shur, Kato and Cramer-Lakshmikantham-Mitchell.


1996 ◽  
Vol 33 (03) ◽  
pp. 870-885
Author(s):  
William P. Peterson ◽  
Lawrence M. Wein

We study a model of a stochastic transportation system introduced by Crane. By adapting constructions of multidimensional reflected Brownian motion (RBM) that have since been developed for feedforward queueing networks, we generalize Crane's original functional central limit theorem results to a full vector setting, giving an explicit development for the case in which all terminals in the model experience heavy traffic conditions. We investigate product form conditions for the stationary distribution of our resulting RBM limit, and contrast our results for transportation networks with those for traditional queueing network models.


Sign in / Sign up

Export Citation Format

Share Document