Extremes
Latest Publications


TOTAL DOCUMENTS

472
(FIVE YEARS 89)

H-INDEX

31
(FIVE YEARS 3)

Published By Springer-Verlag

1572-915x, 1386-1999

Extremes ◽  
2021 ◽  
Author(s):  
Hui Xu ◽  
Richard Davis ◽  
Gennady Samorodnitsky
Keyword(s):  

Extremes ◽  
2021 ◽  
Author(s):  
Markus Heydenreich ◽  
Christian Hirsch

Extremes ◽  
2021 ◽  
Author(s):  
Jovita Gudan ◽  
Alfredas Račkauskas ◽  
Charles Suquet

Extremes ◽  
2021 ◽  
Author(s):  
Nicolas Chenavier ◽  
Christian Hirsch

AbstractPersistent homology captures the appearances and disappearances of topological features such as loops and cavities when growing disks centered at a Poisson point process. We study extreme values for the lifetimes of features dying in bounded components and with birth resp. death time bounded away from the threshold for continuum percolation and the coexistence region. First, we describe the scaling of the minimal lifetimes for general feature dimensions, and of the maximal lifetimes for cavities in the Čech filtration. Then, we proceed to a more refined analysis and establish Poisson approximation for large lifetimes of cavities and for small lifetimes of loops. Finally, we also study the scaling of minimal lifetimes in the Vietoris-Rips setting and point to a surprising difference to the Čech filtration.


Extremes ◽  
2021 ◽  
Author(s):  
Krzysztof Dȩbicki ◽  
Enkelejd Hashorva ◽  
Nikolai Kriukov

AbstractModelling of multiple simultaneous failures in insurance, finance and other areas of applied probability is important especially from the point of view of pandemic-type events. A benchmark limiting model for the analysis of multiple failures is the classical d-dimensional Brownian risk model (Brm), see Delsing et al. (Methodol. Comput. Appl. Probab. 22(3), 927–948 2020). From both theoretical and practical point of view, of interest is the calculation of the probability of multiple simultaneous failures in a given time horizon. The main findings of this contribution concern the approximation of the probability that at least k out of d components of Brm fail simultaneously. We derive both sharp bounds and asymptotic approximations of the probability of interest for the finite and the infinite time horizon. Our results extend previous findings of Dȩbicki et al. (J. Appl. Probab. 57(2), 597–612 2020) and Dȩbicki et al. (Stoch. Proc. Appl. 128(12), 4171–4206 2018).


Extremes ◽  
2021 ◽  
Author(s):  
Sergey Foss ◽  
Dmitry Korshunov ◽  
Zbigniew Palmowski

AbstractMotivated by a seminal paper of Kesten et al. (Ann. Probab., 3(1), 1–31, 1975) we consider a branching process with a conditional geometric offspring distribution with i.i.d. random environmental parameters An, n ≥ 1 and with one immigrant in each generation. In contrast to above mentioned paper we assume that the environment is long-tailed, that is that the distribution F of $\xi _{n}:=\log ((1-A_{n})/A_{n})$ ξ n : = log ( ( 1 − A n ) / A n ) is long-tailed. We prove that although the offspring distribution is light-tailed, the environment itself can produce extremely heavy tails of the distribution of the population size in the n th generation which becomes even heavier with increase of n. More precisely, we prove that, for all n, the distribution tail $\mathbb {P}(Z_{n} \ge m)$ ℙ ( Z n ≥ m ) of the n th population size Zn is asymptotically equivalent to $n\overline F(\log m)$ n F ¯ ( log m ) as m grows. In this way we generalise Bhattacharya and Palmowski (Stat. Probab. Lett., 154, 108550, 2019) who proved this result in the case n = 1 for regularly varying environment F with parameter α > 1. Further, for a subcritical branching process with subexponentially distributed ξn, we provide the asymptotics for the distribution tail $\mathbb {P}(Z_{n}>m)$ ℙ ( Z n > m ) which are valid uniformly for all n, and also for the stationary tail distribution. Then we establish the “principle of a single atypical environment” which says that the main cause for the number of particles to be large is the presence of a single very small environmental parameter Ak.


Sign in / Sign up

Export Citation Format

Share Document