Actomyosin motor in the merozoite of the malaria parasite, Plasmodium falciparum: implications for red cell invasion

1998 ◽  
Vol 111 (13) ◽  
pp. 1831-1839 ◽  
Author(s):  
J.C. Pinder ◽  
R.E. Fowler ◽  
A.R. Dluzewski ◽  
L.H. Bannister ◽  
F.M. Lavin ◽  
...  

The genome of the malaria parasite, Plasmodium falciparum, contains a myosin gene sequence, which bears a close homology to one of the myosin genes found in another apicomplexan parasite, Toxoplasma gondii. A polyclonal antibody was generated against an expressed polypeptide of molecular mass 27,000, based on part of the deduced sequence of this myosin. The antibody reacted with the cognate antigen and with a component of the total parasite protein on immunoblots, but not with vertebrate striated or smooth muscle myosins. It did, however, recognise two components in the cellular protein of Toxoplasma gondii. The antibody was used to investigate stage-specificity of expression of the myosin (here designated Pf-myo1) in P. falciparum. The results showed that the protein is synthesised in mature schizonts and is present in merozoites, but vanishes after the parasite enters the red cell. Pf-myo1 was found to be largely, though not entirely, associated with the particulate parasite cell fraction and is thus presumably mainly membrane bound. It was not solubilised by media that would be expected to dissociate actomyosin or myosin filaments, or by non-ionic detergent. Immunofluorescence revealed that in the merozoite and mature schizont Pf-myo1 is predominantly located around the periphery of the cell. Immuno-gold electron microscopy also showed the presence of the myosin around almost the entire parasite periphery, and especially in the region surrounding the apical prominence. Labelling was concentrated under the plasma membrane but was not seen in the apical prominence itself. This suggests that Pf-myo1 is associated with the plasma membrane or with the outer membrane of the subplasmalemmal cisterna, which forms a lining to the plasma membrane, with a gap at the apical prominence. The results lead to a conjectural model of the invasion mechanism.

2001 ◽  
Vol 114 (18) ◽  
pp. 3377-3386
Author(s):  
Akinola Adisa ◽  
Frank R. Albano ◽  
John Reeder ◽  
Michael Foley ◽  
Leann Tilley

The malaria parasite, Plasmodium falciparum, spends part of its life cycle inside the enucleated erythrocytes of its human host. The parasite modifies the cytoplasm and plasma membrane of its host cell by exporting proteins beyond the confines of its own plasma membrane. We have previously provided evidence that a plasmodial homologue of the COPII protein, Sar1p, is involved in the trafficking of proteins across the erythrocyte cytoplasm. We have now characterised an additional plasmodial COPII protein homologue, namely Sec31p. Recombinant proteins corresponding to the WD-40 and the intervening domains of the PfSec31p sequence were used to raise antibodies. The affinity-purified antisera recognised a protein with an apparent relative molecular mass of 1.6×105 on western blots of malaria parasite-infected erythrocytes but not on blots of uninfected erythrocytes. PfSec31p was shown to be largely insoluble in nonionic detergent, suggesting cytoskeletal attachment. Confocal immunofluorescence microscopy of malaria parasite-infected erythrocytes was used to show that PfSec31p is partly located within the parasite and partly exported to structures outside the parasite in the erythrocyte cytoplasm. We have also shown that PfSec31p and PfSar1p occupy overlapping locations. Furthermore, the location of PfSec31p overlaps that of the cytoadherence-mediating protein PfEMP1. These data support the suggestion that the malaria parasite establishes a vesicle-mediated trafficking pathway outside the boundaries of its own plasma membrane – a novel paradigm in eukaryotic biology.


2006 ◽  
Vol 281 (42) ◽  
pp. 31517-31527
Author(s):  
Christian W. Kauth ◽  
Ute Woehlbier ◽  
Michaela Kern ◽  
Zeleke Mekonnen ◽  
Rolf Lutz ◽  
...  

2002 ◽  
Vol 45 (2) ◽  
pp. 533-542 ◽  
Author(s):  
D. H. Williamson ◽  
P. R. Preiser ◽  
P. W. Moore ◽  
S. McCready ◽  
M. Strath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document