pyruvate dehydrogenase complex
Recently Published Documents


TOTAL DOCUMENTS

1228
(FIVE YEARS 134)

H-INDEX

71
(FIVE YEARS 4)

2022 ◽  
Vol 28 (1) ◽  
Author(s):  
Dongze Li ◽  
Na Xu ◽  
Yanyan Hou ◽  
Wenjing Ren ◽  
Na Zhang ◽  
...  

AbstractThe mechanisms of chronic intermittent hypoxia (CIH)-induced cognitive deficits remain unclear. Here, our study found that about 3 months CIH treatment induced lipid droplets (LDs) accumulation in hippocampal nerve and glia cells of C57BL/6 mice, and caused severe neuro damage including neuron lesions, neuroblast (NB) apoptosis and abnormal glial activation. Studies have shown that the neuronal metabolism disorders might contribute to the CIH induced-hippocampal impairment. Mechanistically, the results showed that pyruvate dehydrogenase complex E1ɑ subunit (PDHA1) and the pyruvate dehydrogenase complex (PDC) activator pyruvate dehydrogenase phosphatase 1 (PDP1) did not noticeable change after intermittent hypoxia. Consistent with those results, the level of Acetyl-CoA in hippocampus did not significantly change after CIH exposure. Interestingly, we found that CIH produced large quantities of ROS, which activated the JNK/SREBP/ACC pathway in nerve and glia cells. ACC catalyzed the carboxylation of Acetyl-CoA to malonyl-CoA and then more lipid acids were synthesized, which finally caused aberrant LDs accumulation. Therefore, the JNK/SREBP/ACC pathway played a crucial role in the cognitive deficits caused by LDs accumulation after CIH exposure. Additionally, LDs were peroxidized by the high level of ROS under CIH conditions. Together, lipid metabolic disorders contributed to nerve and glia cells damage, which ultimately caused behavioral dysfunction. An active component of Salvia miltiorrhiza, SMND-309, dramatically alleviated these injuries and improved cognitive deficits of CIH mice.


Author(s):  
I. V. Ukolova ◽  
I. G. Kondratov ◽  
M. A. Kondakova ◽  
I. V. Lyubushkina ◽  
O. I. Grabelnykh ◽  
...  

Studies into mitochondrial сomplexomes in various organisms provide an insight into the native organization of proteins and metabolic pathways in the organelles of the subject under study. “Complexome” is a relatively recent concept describing the proteome of protein complexes, supercomplexes, and oligomeric proteins. Complexome analysis is performed using current electrophoretic and mass spectrometric techniques, in particular, by two-dimensional electrophoresis (2D BN/SDS-PAGE) in combination with mass spectrometry (MS). Unlike 2D IEF/SDS-PAGE, this method enables analysis of not only hydrophilic proteins of the mitochondrial matrix, but also membrane proteins and their associations, thus expanding the possibilities of studying the organelle proteome. In the present work, the complexome of etiolated pea shoots was studied for the first time using 2D BN/SDS-PAGE followed by MALDI-TOF MS. To this end, 145 protein spots excised from the gel were analyzed; 110 polypeptides were identified and assigned to different functional groups. A densitometric analysis revealed that the major protein group comprised the enzymes of the mitochondrial energy system (1), accounting for an average of 43% of the total polypeptide content. The remaining 57% was primarily distributed among the following functional categories: pyruvate dehydrogenase complex and citric acid cycle (2); amino acid metabolism (3); nucleic acid processing (4); protein folding (5); antioxidant protection (6); carrier proteins (7); other proteins (8); proteins having unknown functions (9). The obtained data indicate the complex organization of the pea proteome. In addition to the enzymes of the OXPHOS system, the proteins of other functional categories are found to form supramolecular structures. It is suggested that the presence of proteins from other cellular compartments may indicate the interaction of mitochondria with the enzymes or structures of corresponding organelles. In general, the obtained data on the pea complexome represent a kind of a mitochondrial “passport” that reflects the native state of the proteome of organelles corresponding to their physiological status.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ning Zhang ◽  
Limin Song ◽  
Yang Xu ◽  
Xueyuan Pei ◽  
Ben F Luisi ◽  
...  

Fusarium oxysporum is one of the most important pathogenic fungi with a broad range of plant and animal hosts. The first key step of its infection cycle is conidial germination, but there is limited information available on the molecular events supporting this process. We show here that germination is accompanied by a sharp decrease in expression of FoSir5, an ortholog of the human lysine deacetylase SIRT5. We observe that FoSir5 decrotonylates a subunit of the fungal pyruvate dehydrogenase complex (FoDLAT) at K148, resulting in inhibition of the activity of the complex in mitochondria. Moreover, FoSir5 decrotonylates histone H3K18, leading to a downregulation of transcripts encoding enzymes of aerobic respiration pathways. Thus, the activity of FoSir5 coordinates regulation in different organelles to steer metabolic flux through respiration. As ATP content is positively related to fungal germination, we propose that FoSir5 negatively modulates conidial germination in F. oxysporum through its metabolic impact. These findings provide insights into the multifaceted roles of decrotonylation, catalysed by FoSir5, that support conidial germination in F. oxysporum.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhenhua Zeng ◽  
Qiaobing Huang ◽  
Liangfeng Mao ◽  
Jie Wu ◽  
Sheng An ◽  
...  

Anaerobic glycolysis is the process by which glucose is broken down into pyruvate and lactate and is the primary metabolic pathway in sepsis. The pyruvate dehydrogenase complex (PDHC) is a multienzyme complex that serves as a critical hub in energy metabolism. Under aerobic conditions, pyruvate translocates to mitochondria, where it is oxidized into acetyl-CoA through the activation of PDHC, thereby accelerating aerobic oxidation. Both phosphorylation and acetylation affect PDHC activity and, consequently, the regulation of energy metabolism. The mechanisms underlying the protective effects of PDHC in sepsis involve the regulation on the balance of lactate, the release of inflammatory mediators, the remodeling of tricarboxylic acid (TCA) cycle, as well as on the improvement of lipid and energy metabolism. Therapeutic drugs that target PDHC activation for sepsis treatment include dichloroacetate, thiamine, amrinone, TNF-binding protein, and ciprofloxacin. In this review, we summarize the recent findings regarding the metabolic regulation of PDHC in sepsis and the therapies targeting PDHC for the treatment of this condition.


2021 ◽  
Author(s):  
Ning Zhang ◽  
Limin Song ◽  
Yang Xu ◽  
Xue Yuan Pei ◽  
Ben F Luisi ◽  
...  

Fusarium oxysporum is one of the most important pathogenic fungi with a broad range of plant and animal hosts. The first key step of its infection cycle is conidial germination, but there is limited information available on the molecular events supporting this process. We show here that germination is accompanied by a sharp decrease in expression of FoSir5, an ortholog of the human lysine deacetylase SIRT5. We observe that FoSir5 decrotonylates a subunit of the fungal pyruvate dehydrogenase complex (FoDLAT) at K148, resulting in inhibition of the activity of the complex in mitochondria. Moreover, FoSir5 decrotonylates histone H3K18, leading to a downregulation of transcripts encoding enzymes of aerobic respiration pathways. Thus, the activity of FoSir5 coordinates regulation in different organelles to steer metabolic flux through respiration. As ATP content is positively related to fungal germination, we propose that FoSir5 negatively modulates conidial germination in F. oxysporum through its metabolic impact. These findings provide insights into the multifaceted roles of decrotonylation, catalysed by FoSir5, that support conidial germination in F. oxysporum.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christian Tüting ◽  
Fotis L. Kyrilis ◽  
Johannes Müller ◽  
Marija Sorokina ◽  
Ioannis Skalidis ◽  
...  

AbstractFound across all kingdoms of life, 2-keto acid dehydrogenase complexes possess prominent metabolic roles and form major regulatory sites. Although their component structures are known, their higher-order organization is highly heterogeneous, not only across species or tissues but also even within a single cell. Here, we report a cryo-EM structure of the fully active Chaetomium thermophilum pyruvate dehydrogenase complex (PDHc) core scaffold at 3.85 Å resolution (FSC = 0.143) from native cell extracts. By combining cryo-EM with macromolecular docking and molecular dynamics simulations, we resolve all PDHc core scaffold interfaces and dissect the residing transacetylase reaction. Electrostatics attract the lipoyl domain to the transacetylase active site and stabilize the coenzyme A, while apolar interactions position the lipoate in its binding cleft. Our results have direct implications on the structural determinants of the transacetylase reaction and the role of flexible regions in the context of the overall 10 MDa PDHc metabolon architecture.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ewa Kilanczyk ◽  
Jesus M. Banales ◽  
Ewelina Jurewicz ◽  
Piotr Milkiewicz ◽  
Malgorzata Milkiewicz

AbstractThe E2 component of the mitochondrial pyruvate dehydrogenase complex (PDC) is the key autoantigen in primary biliary cholangitis (PBC) and STAT3 is an inflammatory modulator that participates in the pathogenesis of many liver diseases. This study investigated whether PDC-E2 interacts with STAT3 in human cholangiocytes (NHC) and hepatocytes (Hep-G2) under cholestatic conditions induced by glyco-chenodeoxycholic acid (GCDC). GCDC induced PDC-E2 expression in the cytoplasmic and nuclear fraction of NHC, whereas in Hep-G2 cells PDC-E2 expression was induced only in the cytoplasmic fraction. GCDC-treatment stimulated phosphorylation of STAT3 in the cytoplasmic fraction of NHC. siRNA-mediated gene silencing of PDC-E2 reduced the expression of pY-STAT3 in NHC but not in HepG2 cells. Immunoprecipitation and a proximity ligation assay clearly demonstrated that GCDC enhanced pY-STAT3 binding to PDC-E2 in the nuclear and cytoplasmic fraction of NHC cells. Staining with Mitotracker revealed mitochondrial co-localization of PDC-E2/pS-STAT3 complexes in NHC and Hep-G2 cells. In cirrhotic PBC livers the higher expression of both PDC-E2 and pY-STAT3 was observed. The immunoblot analysis demonstrated the occurrence of double bands of PDC-E2 protein in control livers, which was associated with a lower expression of pY-STAT3. Our data indicate the interaction between PDC-E2 and phosphorylated STAT3 under cholestatic conditions, which may play a role in the development of PBC.


Sign in / Sign up

Export Citation Format

Share Document