dehydrogenase complex
Recently Published Documents


TOTAL DOCUMENTS

1531
(FIVE YEARS 109)

H-INDEX

78
(FIVE YEARS 5)

2022 ◽  
Vol 28 (1) ◽  
Author(s):  
Dongze Li ◽  
Na Xu ◽  
Yanyan Hou ◽  
Wenjing Ren ◽  
Na Zhang ◽  
...  

AbstractThe mechanisms of chronic intermittent hypoxia (CIH)-induced cognitive deficits remain unclear. Here, our study found that about 3 months CIH treatment induced lipid droplets (LDs) accumulation in hippocampal nerve and glia cells of C57BL/6 mice, and caused severe neuro damage including neuron lesions, neuroblast (NB) apoptosis and abnormal glial activation. Studies have shown that the neuronal metabolism disorders might contribute to the CIH induced-hippocampal impairment. Mechanistically, the results showed that pyruvate dehydrogenase complex E1ɑ subunit (PDHA1) and the pyruvate dehydrogenase complex (PDC) activator pyruvate dehydrogenase phosphatase 1 (PDP1) did not noticeable change after intermittent hypoxia. Consistent with those results, the level of Acetyl-CoA in hippocampus did not significantly change after CIH exposure. Interestingly, we found that CIH produced large quantities of ROS, which activated the JNK/SREBP/ACC pathway in nerve and glia cells. ACC catalyzed the carboxylation of Acetyl-CoA to malonyl-CoA and then more lipid acids were synthesized, which finally caused aberrant LDs accumulation. Therefore, the JNK/SREBP/ACC pathway played a crucial role in the cognitive deficits caused by LDs accumulation after CIH exposure. Additionally, LDs were peroxidized by the high level of ROS under CIH conditions. Together, lipid metabolic disorders contributed to nerve and glia cells damage, which ultimately caused behavioral dysfunction. An active component of Salvia miltiorrhiza, SMND-309, dramatically alleviated these injuries and improved cognitive deficits of CIH mice.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhenhua Zeng ◽  
Qiaobing Huang ◽  
Liangfeng Mao ◽  
Jie Wu ◽  
Sheng An ◽  
...  

Anaerobic glycolysis is the process by which glucose is broken down into pyruvate and lactate and is the primary metabolic pathway in sepsis. The pyruvate dehydrogenase complex (PDHC) is a multienzyme complex that serves as a critical hub in energy metabolism. Under aerobic conditions, pyruvate translocates to mitochondria, where it is oxidized into acetyl-CoA through the activation of PDHC, thereby accelerating aerobic oxidation. Both phosphorylation and acetylation affect PDHC activity and, consequently, the regulation of energy metabolism. The mechanisms underlying the protective effects of PDHC in sepsis involve the regulation on the balance of lactate, the release of inflammatory mediators, the remodeling of tricarboxylic acid (TCA) cycle, as well as on the improvement of lipid and energy metabolism. Therapeutic drugs that target PDHC activation for sepsis treatment include dichloroacetate, thiamine, amrinone, TNF-binding protein, and ciprofloxacin. In this review, we summarize the recent findings regarding the metabolic regulation of PDHC in sepsis and the therapies targeting PDHC for the treatment of this condition.


2021 ◽  
Author(s):  
Nicanor González Morales ◽  
Océane Marescal ◽  
Szilárd Szikora ◽  
Miklos Erdelyi ◽  
Péter Bíró ◽  
...  

Myofibrils are long intracellular cables specific to muscles, composed mainly of actin and myosin filaments. The actin and myosin filaments are organized into repeated units called sarcomeres, which form the myofibril cables. Muscle contraction is achieved by the simultaneous shortening of sarcomeres and for a highly coordinated contraction to occur all sarcomeres should have the same size. Muscles have evolved a variety of ways to ensure sarcomere homogeneity, one example being the controlled oligomerization of Zasp proteins that sets the diameter of the myofibril. To understand how Zasp proteins effect myofibril growth, we looked for Zasp-binding proteins at the Z-disc. We found that the E1 subunit of the oxoglutarate dehydrogenase complex is recruited to the Z-disc by Zasp52 and is required to sustain myofibril growth. By making specific mutants, we show that its enzymatic activity is important for myofibril growth, and that the other two subunits of the complex are also required for myofibril formation. Using super resolution microscopy, we revealed the overall organization of the complex at the Z-disc. Then, using metabolomic analysis, we uncovered an amino acid balance defect affecting protein synthesis, that we also confirmed by genetic tools. In summary, we show that Zasp controls the local amino acid pool responsible for myofibril growth by recruiting the OGDH complex to the Z-disc.


2021 ◽  
Author(s):  
Dongze Li ◽  
Yan Yu ◽  
Na Xu ◽  
Wanting Li ◽  
Yanyan Hou ◽  
...  

Abstract The mechanisms of chronic intermittent hypoxia (CIH)-induced cognitive deficits remain unclear. Here, our study found that 12 weeks CIH treatment induced lipid droplets (LDs) accumulation in hippocampal neurocytes of C57BL/6 mice, and caused severe neuro damage including neuron lesions, neuroblast (NB) apoptosis and abnormal glial activation. Studies have shown that the neuronal metabolism disorders might contribute to the CIH induced-hippocampal impairment. Mechanistically, the results showed that pyruvate dehydrogenase complex E1ɑ subunit (PDHA1) and the pyruvate dehydrogenase complex (PDC) activator pyruvate dehydrogenase phosphatase 1 (PDP1) did not noticeable change after intermittent hypoxia. Consistent with those results, the level of Acetyl-CoA in hippocampus did not significantly change after CIH exposure. Interestingly, we found that CIH produced large quantities of ROS, which activated the JNK/SREBP/ACC pathway in neurocytes. ACC catalyzed the carboxylation of Acetyl-CoA to malonyl-CoA and then more lipid acids were synthesized, which finally caused aberrant LDs accumulation. Therefore, the JNK/SREBP/ACC pathway played a crucial role in the cognitive deficits caused by LDs accumulation after CIH exposure. Additionally, LDs were peroxidized by the high level of ROS under CIH conditions. Together, lipid metabolic disorders contributed to neurocytes damage, which ultimately caused behavioral dysfunction. An active component of Salvia miltiorrhiza, SMND-309, dramatically alleviated these injuries and improved cognitive deficits of CIH mice.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jana Škerlová ◽  
Jens Berndtsson ◽  
Hendrik Nolte ◽  
Martin Ott ◽  
Pål Stenmark

AbstractThe pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle by converting pyruvate into acetyl-coenzyme A. PDHc encompasses three enzymatically active subunits, namely pyruvate dehydrogenase, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase. Dihydrolipoyl transacetylase is a multidomain protein comprising a varying number of lipoyl domains, a peripheral subunit-binding domain, and a catalytic domain. It forms the structural core of the complex, provides binding sites for the other enzymes, and shuffles reaction intermediates between the active sites through covalently bound lipoyl domains. The molecular mechanism by which this shuttling occurs has remained elusive. Here, we report a cryo-EM reconstruction of the native E. coli dihydrolipoyl transacetylase core in a resting state. This structure provides molecular details of the assembly of the core and reveals how the lipoyl domains interact with the core at the active site.


Sign in / Sign up

Export Citation Format

Share Document