Rab3 is present on endosomes from bovine chromaffin cells in primary culture

1999 ◽  
Vol 112 (5) ◽  
pp. 641-649
Author(s):  
D. Slembrouck ◽  
W.G. Annaert ◽  
J.M. Wang ◽  
W.P. Potter

Rab3a, a small GTP-binding protein, is believed to mediate Ca2+-dependent exocytosis. Consistent with such a role was the previously reported specific association of Rab3a with synaptic vesicles in neurons and secretory granules in adrenal chromaffin cells. Secretory vesicles are believed to be the final point of Rab3a membrane association, as it was shown by several groups that Rab3a dissociates from the secretory vesicle membrane during stimulated exocytosis. In chromaffin cells, Rab3a is not exclusively localized on secretory granules since a fraction is present on a previously unidentified subcellular compartment equilibrating at light sucrose density. This ‘light’ membraneous structure could be the starting point for reassociation of Rab3a with membranes involved in granule formation, or it could be a structure unrelated to granules. The present study used several subcellular fractionation techniques and immunomicroscopy to unravel the nature of the ‘light’ Rab3a-containing structures from bovine chromaffin cells in primary culture. After stimulation, amounts of both Rab3a-d and the granule marker dopamine-beta-hydroxylase (DbetaH) increase transiently in sucrose gradient fractions enriched in endosomal markers. A diaminobenzidine-induced density shift of endosomes alters the distribution of DbetaH and Rab3a-d. At the ultrastructural level, subplasmalemmal pleiomorphic organelles were detected by Rab3a-d-immunogold labelling. Taken together our data provide for the first time evidence that internalised secretory granule membranes go through an endosomal stage where Rab3a is present, resembling the neuronal synaptic vesicle cycle. This indicates that the endosome is an important trafficking route in the biogenesis/recycling of secretory vesicles in chromaffin cells, in which Rab3a could have an as yet unknown regulatory function, and could point to the existence of alternative recycling pathways for the chromaffin granule membrane.

2007 ◽  
Vol 2 (5) ◽  
pp. 1248-1253 ◽  
Author(s):  
Daniel T O'Connor ◽  
Sushil K Mahata ◽  
Manjula Mahata ◽  
Qijiao Jiang ◽  
Vivian Y Hook ◽  
...  

2001 ◽  
Vol 153 (1) ◽  
pp. 177-190 ◽  
Author(s):  
Laura M. Johns ◽  
Edwin S. Levitan ◽  
Eric A. Shelden ◽  
Ronald W. Holz ◽  
Daniel Axelrod

We used total internal reflection fluorescence microscopy to study quantitatively the motion and distribution of secretory granules near the plasma membrane (PM) of living bovine chromaffin cells. Within the ∼300-nm region measurably illuminated by the evanescent field resulting from total internal reflection, granules are preferentially concentrated close to the PM. Granule motion normal to the substrate (the z direction) is much slower than would be expected from free Brownian motion, is strongly restricted over tens of nanometer distances, and tends to reverse directions within 0.5 s. The z-direction diffusion coefficients of granules decrease continuously by two orders of magnitude within less than a granule diameter of the PM as granules approach the PM. These analyses suggest that a system of tethers or a heterogeneous matrix severely limits granule motion in the immediate vicinity of the PM. Transient expression of the light chains of tetanus toxin and botulinum toxin A did not disrupt the restricted motion of granules near the PM, indicating that SNARE proteins SNAP-25 and VAMP are not necessary for the decreased mobility. However, the lack of functional SNAREs on the plasma or granule membranes in such cells reduces the time that some granules spend immediately adjacent to the PM.


2017 ◽  
Author(s):  
Mary A. Bittner ◽  
Kevin P. Bohannon ◽  
Daniel Axelrod ◽  
Ronald W. Holz

AbstractSynuclein is strongly implicated in the pathogenesis of Parkinson’s disease as well as in other neurodegenerative diseases. However, its normal function in cells is not understood. The N-termini of α-, β-, and γ-synuclein are comprised of seven 11-amino acid repeats that are predicted to form amphipathic helices. α-Synuclein binds to negatively charged lipids, especially small vesicles and tubulates and vesiculates lipids. The membrane-binding and membrane-curving abilities raise the possibility that synuclein could alter cellular processes that involve highly curved structures. In the present study we examined the localization of endogenous synuclein in bovine chromaffin cells by immunocytochemistry and its possible function to control protein discharge upon fusion of the granule with the plasma membrane by regulating the fusion pore. We found with quantitative immunocytochemistry that endogenous β-synuclein associates with secretory granules. Endogenous α-synuclein only rarely is found on secretory granules. Overexpression of α-synuclein but not β-synuclein quickened the median duration of the post-fusion discharge of BDNF-pHluorin by 30%, consistent with α-synuclein speeding fusion pore expansion.


2002 ◽  
Vol 383 (7-8) ◽  
pp. 1067-1074 ◽  
Author(s):  
V. Y. H. Hook ◽  
S.-R. Hwang

Abstract Secretory vesicles of neuroendocrine cells possess multiple proteases for proteolytic processing of proteins into biologically active peptide components, such as peptide hormones and neurotransmitters. The importance of proteases within secretory vesicles predicts the presence of endogenous protease inhibitors in this subcellular compartment. Notably, serpins represent a diverse class of endogenous protease inhibitors that possess selective target protease specificities, defined by the reactive site loop domains (RSL). In the search for endogenous serpins in model secretory vesicles of neuroendocrine chromaffin cells, the presence of serpins related to α1-antichymotrypsin (ACT) was detected by Western blots with antiACT. Molecular cloning revealed the primary structures of two unique serpins, endopin 1 and endopin 2, that possess homology to ACT. Of particular interest was the observation that distinct RSL domains of these new serpins predicted that endopin 1 would inhibit trypsinlike serine proteases cleaving at basic residues, and endopin 2 would inhibit both elastase and papain that represent serine and cysteine proteases, respectively. Endopin 1 showed selective inhibition of trypsin, but did not inhibit chymotrypsin, elastase, or subtilisin. Endopin 2 demonstrated crossclass inhibition of the cysteine protease papain and the serine protease elastase. Endopin 2 did not inhibit chymotrypsin, trypsin, plasmin, thrombin, furin, or cathepsin B. Endopin 1 and endopin 2 each formed SDSstable complexes with target proteases, a characteristic property of serpins. In neuroendocrine chromaffin cells from adrenal medulla, endopin 1 and endopin 2 were both localized to secretory vesicles. Moreover, the inhibitory activity of endopin 2 was optimized under reducing conditions, which required reduced Cys-374; this property is consistent with the presence of endogenous reducing agents in secretory vesicles in vivo. These new findings demonstrate the presence of unique secretory vesicle serpins, endopin 1 and endopin 2, which possess distinct target protease selectivities. Endopin 1 inhibits trypsinlike proteases; endopin 2 possesses crossclass inhibition for inhibition of papainlike cysteine proteases and elastaselike serine proteases. It will be of interest in future studies to define the endogenous protease targets of these two novel secretory vesicle serpins.


Neuroscience ◽  
2003 ◽  
Vol 116 (3) ◽  
pp. 817-829 ◽  
Author(s):  
O. Romero ◽  
S. Figueroa ◽  
S. Vicente ◽  
M.P. González ◽  
M.J. Oset-Gasque

1995 ◽  
Vol 108 (4) ◽  
pp. 1639-1649 ◽  
Author(s):  
F. Darchen ◽  
J. Senyshyn ◽  
W.H. Brondyk ◽  
D.J. Taatjes ◽  
R.W. Holz ◽  
...  

Small GTPases of the rab family control intracellular vesicle traffic in eukaryotic cells. Although the molecular mechanisms underlying the activity of the Rab proteins have not been elucidated yet, it is known that the function of these proteins is dependent on their precise subcellular localization. It has been suggested that Rab3a, which is mainly expressed in neural and endocrine cells, might regulate exocytosis. Recently, direct experimental evidence supporting this hypothesis has been obtained. Consistent with such a role for Rab3a in regulated exocytosis was the previously reported specific association of Rab3a with synaptic vesicles and with secretory granules in adrenal chromaffin cells. Since the latter result, based on subcellular fractionation, has been controversial, we have re-investigated the subcellular localization of this GTP-binding protein by using a combination of morphological techniques. Bovine chromaffin cells were labelled with an affinity-purified polyclonal anti-Rab3a antibody and analyzed by confocal microcopy. Rab3a was found to colocalize partially with dopamine beta-hydroxylase, a chromaffin granule marker. In agreement with this observation, immunoelectron microscopy revealed a specific staining of chromaffin granules. In addition to large dense core vesicles, some small vesicles were labelled. To eliminate the possibility that the staining was due to a Rab3a-related protein, we investigated by immunoelectron microscopy the localization of an epitope-tagged Rab3a expressed in rat PC12 cells. Secretory granules were specifically labelled, whereas clear microvesicles were not. These results provide further evidence supporting a specific association of the GTPase Rab3a with large dense core secretory vesicles.


Sign in / Sign up

Export Citation Format

Share Document