Cytochemical Localization of Transferase Activities: Carnitine Acetyltransferase

1970 ◽  
Vol 6 (1) ◽  
pp. 29-50
Author(s):  
JOAN A. HIGGINS ◽  
R. J. BARRNETT

Two methods for the cytochemical detection of free CoA and their utilization in the fine-structural localization of carnitine acetyltransferase in rat heart are described. The first utilizes the reducing property of the SH group of CoA to reduce potassium ferricyanide to potassium ferrocyanide, which in the presence of uranyl ions forms an electron-dense precipitate of uranyl ferrocyanide. The second utilizes the mercaptide-forming property of the free SH group of CoA, which forms a precipitate with cadmium ions. Using the uranyl-ferrocyanide method, reaction product due to endogenous enzymic activity was found on and between the cristae and between the inner and outer membranes of the mitochondria in fresh heart muscle. In aldehyde-fixed tissue activity was recorded only between the inner and outer membranes. Endogenous activity was removed by preincubation of the tissue in a solution of ferricyanide. On addition of acetyl CoA and carnitine to the incubation medium, fresh tissue, which had been preincubated in ferricyanide, showed reaction product between and on the cristae and between the inner and outer membranes of the mitochondria, while fixed tissue showed reaction product in the latter position only. In both cases the activity between the outer and inner mitochondrial membranes was dependent on both acetyl CoA and carnitine, while the cristae reaction occurred in the absence of carnitine, but required acetyl CoA. All activity was inhibited by mercuric chloride. Acetyl carnitine reduced the activity in the fixed tissue and had severe effects on the structure of fresh mitochondria. These results suggest the presence of carnitine acetyltransferase, which survives aldehyde fixation, on the inner surface of the outer mitochondrial membrane and/or the outer surface of the inner mitochondrial membrane. A second enzyme which released CoA from acetyl CoA occurred in relation to the cristae of unfixed mitochondria. The cadmium method was less satisfactory than the uranyl-ferrocyanide method but with fixed tissue gave confirmatory results.

1975 ◽  
Vol 152 (2) ◽  
pp. 167-172 ◽  
Author(s):  
N. D. Costa ◽  
A. M. Snoswell

1. The nature of the acetyl-CoA hydrolase (EC 3.1.2.1) reaction in rat and sheep liver homogenates was investigated. 2. The activity determined in an incubated system was 5.10 and 3.28nmol/min per mg of protein for rat and sheep liver homogenate respectively. This activity was not affected by the addition of l-carnitine, but was decreased by the addition of d-carnitine. 3. No acetyl-CoA hydrolase activity could be detected in rat or sheep liver homogenates first treated with Sephadex G-25. This treatment decreased the carnitine concentrations of the homogenates to about one-twentieth. Subsequent addition of l-carnitine, but not d-carnitine, restored the apparent acetyl-CoA hydrolase activity. 4. Sephadex treatment did not affect acetyl-carnitine hydrolase activity of the homogenates, which was 5.8 and 8.1nmol/min per mg of protein respectively for rat and sheep liver. 5. Direct spectrophotometric assay of acetyl-CoA hydrolase, based on the reaction of CoA released with 5,5′-dithiobis-(2-nitrobenzoic acid), clearly demonstrated that after Sephadex treatment no activity could be measured. 6. Carnitine acetyltransferase (EC 2.3.1.7) activity measured in the same assay system in response to added l-carnitine was very low in normal rat liver homogenates, owing to the apparent high acetyl-CoA hydrolase activity, but was increased markedly after Sephadex treatment. The Vmax. for this enzyme in rat liver homogenates was increased from 3.4 to 14.8nmol/min per mg of protein whereas the Km for l-carnitine was decreased from 936 to 32μm after Sephadex treatment. 7. Acetyl-CoA hydrolase activity could be demonstrated in disrupted rat liver mitochondria but not in separated outer or inner mitochondrial membrane fractions. Activity could be demonstrated after recombination of outer and inner mitochondrial membrane fractions. The outer mitochondrial membrane fraction showed acetylcarnitine hydrolase activity and the inner mitochondrial membrane fraction showed carnitine acetyltransferase activity. 8. The results presented here demonstrate that acetyl-CoA hydrolase activity in rat and sheep liver is an artifact and the activity is due to the combined activity of carnitine acetyltransferase and acetylcarnitine hydrolase.


1980 ◽  
Vol 46 (1) ◽  
pp. 129-147
Author(s):  
J. Spacek ◽  
A.R. Lieberman

This study is concerned with extensions of the outer membranes of mitochondria in cells of nervous tissue, and with possible relationships between the extensions and the agranular reticulum. A variety of preparative techniques was applied to a large number of different central nervous tissues (CNS) and peripheral nervous tissues (PNS), using conventional thin sections, thicker sections (100 nm or more) and 3-dimensional reconstructions of serial thin sections. Extensions were commonly observed, particularly from the ends of longitudinally oriented mitochondria in axons and dendrites. Often these had the appearance of, and could be traced into apparent continuity with, adjacent elements of the agranular membrane. In addition to these apical tubular extensions, we also observed and reconstructed short lateral tubular or sac-like extensions and vesicular protrusions of the outer mitochondrial membrane. We discuss and discount the possibility that the extensions are artefacts, consider the structural and biochemical similarities between the outer mitochondrial membrane and agranular reticulum and propose that the outer mitochondrial is part of the agranular reticulum (or a specialized portion of the agranular reticulum). We suggest that the translocation of mitochondria in nerve cells, and probably in other cells as well, involves movement of the inner mitochondrial membrane and the enclosed matrix (mitoplast) within channels of agranular reticulum in continuity, or in transient continuity, with the outer mitochondrial membrane.


2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Calum Wilson

Pyruvate is oxidized to acetyl‐CoA by pyruvate dehydrogenase which is localized in the mitochondrial matrix. The mitochondrial pyruvate carrier (MPC) is a hetero-oligomer composed of SLC54 family members (MPC1 and MPC2). The MPC is expressed in the inner mitochondrial membrane and involved in the import of pyruvate into mitochondria [1, 5]. Ubiquitous disruption of either MPC1 or MPC2 expression results in embryonic lethality [7, 8]. Clinically relevant concentrations of the insulin sensitizers, thiazolidinediones, specifically inhibit the MPC [3].


1971 ◽  
Vol 49 (5) ◽  
pp. 599-605 ◽  
Author(s):  
Leo P. K. Lee ◽  
Irving B. Fritz

Livers from fetal rats were shown to have lower rates of ketogenesis from acetate, acetylcarnitine, pyruvate, octanoate, and palmitate than liver preparations from adult animals. The enzymes required for ketogenesis from acetyl-CoA were demonstrated to be nonlimiting in fetal livers. The maximal ketogenic activity by disrupted mitochondria incubated with an acetyl-CoA-generating system was one-third or more of that observed in liver mitochondrial fractions prepared from adult rats.The enzymes required for fatty acid oxidation were also shown to be present in liver mitochondria from fetal rats. Although rates of ketogenesis from octanoate and palmitate were low, ketogenesis from octanoylcarnitine was over 60% of that observed in liver mitochondria from adult rats.During late fetal development and shortly after birth, the maximal hepatic ketogenic-forming activity increased rapidly, with the increase occurring completely in mitochondrial and not in cytosol fractions. The enzymes involved with ketone body formation were shown to remain within mitochondrial particles which had been stripped of their outer membranes. Levels of carnitine acetyltransferase were measured in livers from developing rats, and results were compared with previous observations on changes in activities of carnitine palmitoyltransferase.


Author(s):  
R. J. Barrnett ◽  
J. A. Higgins

The main products of intestinal hydrolysis of dietary triglycerides are free fatty acids and monoglycerides. These form micelles from which the lipids are absorbed across the mucosal cell brush border. Biochemical studies have indicated that intestinal mucosal cells possess a triglyceride synthesising system, which uses monoglyceride directly as an acylacceptor as well as the system found in other tissues in which alphaglycerophosphate is the acylacceptor. The former pathway is used preferentially for the resynthesis of triglyceride from absorbed lipid, while the latter is used mainly for phospholipid synthesis. Both lipids are incorporated into chylomicrons. Morphological studies have shown that during fat absorption there is an initial appearance of fat droplets within the cisternae of the smooth endoplasmic reticulum and that these subsequently accumulate in the golgi elements from which they are released at the lateral borders of the cell as chylomicrons.We have recently developed several methods for the fine structural localization of acyltransferases dependent on the precipitation, in an electron dense form, of CoA released during the transfer of the acyl group to an acceptor, and have now applied these methods to a study of the fine structural localization of the enzymes involved in chylomicron lipid biosynthesis. These methods are based on the reduction of ferricyanide ions by the free SH group of CoA.


2007 ◽  
Vol 34 (S 2) ◽  
Author(s):  
D Siemen ◽  
Y Cheng ◽  
X Gu ◽  
P Bednarczyk ◽  
GG Haddad ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 1118-1119
Author(s):  
Heide Schatten ◽  
Marian Lewis

Spaceflight induced mitochondrial alterations have been reported for muscle and may be associated with altered physiological functions in space. Mitochondrial alterations are also indicative of preapoptotic events which are seen in greater amounts in cells exposed to spaceflight when compared with cells cultured at 1 g. Preapoptotic mitochondrial changes include alterations of processes at the inner mitochondrial membrane and can result in changes in mitochondrial volume. Higher amounts of oxidative stress during space flight may be one of the causes for changes which lead to apoptosis. Jurkat cells flown on the STS-76 space shuttle mission showed an increase in the number of cells with apoptotic bodies early in the mission and a time-dependent, microgravity-related increase in the Fas/APO-1 cell death factor. Here we investigated the morphology of mitochondria in Jurkat cells exposed to spaceflight during the STS-76 mission.


Sign in / Sign up

Export Citation Format

Share Document