bk channel
Recently Published Documents


TOTAL DOCUMENTS

802
(FIVE YEARS 143)

H-INDEX

61
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Kunal R. Shah ◽  
Xin Guan ◽  
Jiusheng Yan

Biochemical and functional studies of ion channels have shown that many of these integral membrane proteins form macromolecular signaling complexes by physically associating with many other proteins. These macromolecular signaling complexes ensure specificity and proper rates of signal transduction. The large-conductance, Ca2+-activated K+ (BK) channel is dually activated by membrane depolarization and increases in intracellular free Ca2+ ([Ca2+]i). The activation of BK channels results in a large K+ efflux and, consequently, rapid membrane repolarization and closing of the voltage-dependent Ca2+-permeable channels to limit further increases in [Ca2+]i. Therefore, BK channel-mediated K+ signaling is a negative feedback regulator of both membrane potential and [Ca2+]i and plays important roles in many physiological processes and diseases. However, the BK channel formed by the pore-forming and voltage- and Ca2+-sensing α subunit alone requires high [Ca2+]i levels for channel activation under physiological voltage conditions. Thus, most native BK channels are believed to co-localize with Ca2+-permeable channels within nanodomains (a few tens of nanometers in distance) to detect high levels of [Ca2+]i around the open pores of Ca2+-permeable channels. Over the last two decades, advancement in research on the BK channel’s coupling with Ca2+-permeable channels including recent reports involving NMDA receptors demonstrate exemplary models of nanodomain structural and functional coupling among ion channels for efficient signal transduction and negative feedback regulation. We hereby review our current understanding regarding the structural and functional coupling of BK channels with different Ca2+-permeable channels.


2022 ◽  
Author(s):  
Vivian Gonzalez‐Perez ◽  
Yu Zhou ◽  
Matthew A. Ciorba ◽  
Christopher J. Lingle

2021 ◽  
Author(s):  
Yanyan Geng ◽  
Ping Li ◽  
Alice Butler ◽  
Bill Wang ◽  
Lawrence Salkoff ◽  
...  

De novo mutations play a prominent role in neurodevelopmental diseases including autism, schizophrenia, and intellectual disability. Many de novo mutations are dominant and so severe that the afflicted individuals do not reproduce, so the mutations are not passed into the general population. For multimeric proteins, such severity may result from a dominant-negative effect where mutant subunits assemble with WT to produce channels with adverse properties. Here we study the de novo variant G375R heterozygous with the WT allele for the large conductance voltage- and Ca2+-activated potassium (BK) channel, Slo1. This variant has been reported to produce devastating neurodevelopmental disorders in three unrelated children. If mutant and WT subunits assemble randomly to form tetrameric BK channels, then ~6% of the assembled channels would be wild type (WT), ~88% would be heteromeric incorporating from 1-3 mutant subunits per channel, and ~6% would be homomeric mutant channels consisting of four mutant subunits. To test this hypothesis, we analyzed the biophysical properties of single BK channels in the ensemble of channels expressed following a 1:1 injection of mutant and WT cRNA into oocytes. We found ~3% were WT channels, ~85% were heteromeric channels, and ~12% were homomeric mutant channels. All of the heteromeric channels as well as the homomeric mutant channels displayed toxic properties, indicating a dominant negative effect of the mutant subunits. The toxic channels were open at inappropriate negative voltages, even in the absence of Ca2+, which would lead to altered cellular function and decreased neuronal excitability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sara V. Ochoa ◽  
Liliana Otero ◽  
Andres Felipe Aristizabal-Pachon ◽  
Fernando Hinostroza ◽  
Ingrid Carvacho ◽  
...  

Hypoxia is a condition characterized by a reduction of cellular oxygen levels derived from alterations in oxygen balance. Hypoxic events trigger changes in cell-signaling cascades, oxidative stress, activation of pro-inflammatory molecules, and growth factors, influencing the activity of various ion channel families and leading to diverse cardiovascular diseases such as myocardial infarction, ischemic stroke, and hypertension. The large-conductance, calcium and voltage-activated potassium channel (BK) has a central role in the mechanism of oxygen (O2) sensing and its activity has been related to the hypoxic response. BK channels are ubiquitously expressed, and they are composed by the pore-forming α subunit and the regulatory subunits β (β1–β4), γ (γ1–γ4), and LINGO1. The modification of biophysical properties of BK channels by β subunits underly a myriad of physiological function of these proteins. Hypoxia induces tissue-specific modifications of BK channel α and β subunits expression. Moreover, hypoxia modifies channel activation kinetics and voltage and/or calcium dependence. The reported effects on the BK channel properties are associated with events such as the increase of reactive oxygen species (ROS) production, increases of intracellular Calcium ([Ca2+]i), the regulation by Hypoxia-inducible factor 1α (HIF-1α), and the interaction with hemeproteins. Bronchial asthma, chronic obstructive pulmonary diseases (COPD), and obstructive sleep apnea (OSA), among others, can provoke hypoxia. Untreated OSA patients showed a decrease in BK-β1 subunit mRNA levels and high arterial tension. Treatment with continuous positive airway pressure (CPAP) upregulated β1 subunit mRNA level, decreased arterial pressures, and improved endothelial function coupled with a reduction in morbidity and mortality associated with OSA. These reports suggest that the BK channel has a role in the response involved in hypoxia-associated hypertension derived from OSA. Thus, this review aims to describe the mechanisms involved in the BK channel activation after a hypoxic stimulus and their relationship with disorders like OSA. A deep understanding of the molecular mechanism involved in hypoxic response may help in the therapeutic approaches to treat the pathological processes associated with diseases involving cellular hypoxia.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6144
Author(s):  
Alessia Remigante ◽  
Paolo Zuccolini ◽  
Raffaella Barbieri ◽  
Loretta Ferrera ◽  
Rossana Morabito ◽  
...  

Potassium channels have emerged as regulators of carcinogenesis, thus introducing possible new therapeutic strategies in the fight against cancer. In particular, the large-conductance Ca2+-activated K+ channel, often referred to as BK channel, is involved in several cancer-associated processes. Here, we investigated the effects of different BK activators, NS-11021, NS-19504, and BMS-191011, in IGR39 (primary melanoma cell line) and Panc-1 (primary pancreatic duct carcinoma cell line), highly expressing the channel, and in IGR37 (metastatic melanoma cell line) that barely express BK. Our data showed that NS-11021 and NS-19504 potently activated BK channels in IGR39 and Panc-1 cells, while no effect on channel activation was detected in IGR37 cells. On the contrary, BK channel activator BMS-191011 was less effective. However, only NS-11021 showed significant effects in cancer-associated processes, such as cell survival, migration, and proliferation in these cancer cell lines. Moreover, NS-11021 led to an increase of intracellular Ca2+ concentration, independent of BK channel activation, thus complicating any interpretation of its role in the regulation of cancer-associated mechanisms. Overall, we conclude that the activation of the BK channel by itself is not sufficient to produce beneficial anti-cancer effects in the melanoma and PDAC cell lines examined. Importantly, our results raise an alarm flag regarding the use of presumably specific BK channel openers as anti-cancer agents.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 781
Author(s):  
Maddalena Rupnik ◽  
David Baker ◽  
David L. Selwood

Oligodendrocytes wrap multiple lamellae of their membrane, myelin, around axons of the central nervous system (CNS), to improve impulse conduction. Myelin synthesis is specialised and dynamic, responsive to local neuronal excitation. Subtle pathological insults are sufficient to cause significant neuronal metabolic impairment, so myelin preservation is necessary to safeguard neural networks. Multiple sclerosis (MS) is the most prevalent demyelinating disease of the CNS. In MS, inflammatory attacks against myelin, proposed to be autoimmune, cause myelin decay and oligodendrocyte loss, leaving neurons vulnerable. Current therapies target the prominent neuroinflammation but are mostly ineffective in protecting from neurodegeneration and the progressive neurological disability. People with MS have substantially higher levels of extracellular glutamate, the main excitatory neurotransmitter. This impairs cellular homeostasis to cause excitotoxic stress. Large conductance Ca2+-activated K+ channels (BK channels) could preserve myelin or allow its recovery by protecting cells from the resulting excessive excitability. This review evaluates the role of excitotoxic stress, myelination and BK channels in MS pathology, and explores the hypothesis that BK channel activation could be a therapeutic strategy to protect oligodendrocytes from excitotoxic stress in MS. This could reduce progression of neurological disability if used in parallel to immunomodulatory therapies.


Neuroscience ◽  
2021 ◽  
Vol 475 ◽  
pp. 220-228
Author(s):  
Yujiao Zhang ◽  
Zhenyi Li ◽  
Yinghua Zhang ◽  
Hongxing Zhang ◽  
Chengbiao Lu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Naileth González-Sanabria ◽  
Felipe Echeverría ◽  
Ignacio Segura ◽  
Rosangelina Alvarado-Sánchez ◽  
Ramon Latorre

In the 1970s, calcium-activated potassium currents were recorded for the first time. In 10years, this Ca2+-activated potassium channel was identified in rat skeletal muscle, chromaffin cells and characterized in skeletal muscle membranes reconstituted in lipid bilayers. This calcium- and voltage-activated potassium channel, dubbed BK for “Big K” due to its large ionic conductance between 130 and 300 pS in symmetric K+. The BK channel is a tetramer where the pore-forming α subunit contains seven transmembrane segments. It has a modular architecture containing a pore domain with a highly potassium-selective filter, a voltage-sensor domain and two intracellular Ca2+ binding sites in the C-terminus. BK is found in the plasma membrane of different cell types, the inner mitochondrial membrane (mitoBK) and the nuclear envelope’s outer membrane (nBK). Like BK channels in the plasma membrane (pmBK), the open probability of mitoBK and nBK channels are regulated by Ca2+ and voltage and modulated by auxiliary subunits. BK channels share common pharmacology to toxins such as iberiotoxin, charybdotoxin, paxilline, and agonists of the benzimidazole family. However, the precise role of mitoBK and nBK remains largely unknown. To date, mitoBK has been reported to play a role in protecting the heart from ischemic injury. At the same time, pharmacology suggests that nBK has a role in regulating nuclear Ca2+, membrane potential and expression of eNOS. Here, we will discuss at the biophysical level the properties and differences of mitoBK and nBK compared to those of pmBK and their pharmacology and function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianmin Cui

The large conductance Ca2+-activated potassium (BK) channel is activated by both membrane potential depolarization and intracellular Ca2+ with distinct mechanisms. Neural physiology is sensitive to the function of BK channels, which is shown by the discoveries of neurological disorders that are associated with BK channel mutations. This article reviews the molecular mechanisms of BK channel activation in response to voltage and Ca2+ binding, including the recent progress since the publication of the atomistic structure of the whole BK channel protein, and the neurological disorders associated with BK channel mutations. These results demonstrate the unique mechanisms of BK channel activation and that these mechanisms are important factors in linking BK channel mutations to neurological disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tong Lu ◽  
Hon-Chi Lee

Diabetes mellitus (DM) is an independent risk of macrovascular and microvascular complications, while cardiovascular diseases remain a leading cause of death in both men and women with diabetes. Large conductance Ca2+-activated K+ (BK) channels are abundantly expressed in arteries and are the key ionic determinant of vascular tone and organ perfusion. It is well established that the downregulation of vascular BK channel function with reduced BK channel protein expression and altered intrinsic BK channel biophysical properties is associated with diabetic vasculopathy. Recent efforts also showed that diabetes-associated changes in signaling pathways and transcriptional factors contribute to the downregulation of BK channel expression. This manuscript will review our current understandings on the molecular, physiological, and biophysical mechanisms that underlie coronary BK channelopathy in diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document