scholarly journals Activation of the hprt gene on the inactive X chromosome in transformed diploid female Chinese hamster cells

1989 ◽  
Vol 92 (4) ◽  
pp. 723-732
Author(s):  
S.G. Grant ◽  
R.G. Worton

Treatment with 5-azacytidine, a potent inhibitor of DNA methylation, was used to induce activation of the selectable hprt gene on the inactive X chromosome in a diploid female Chinese hamster cell line. The transformed, stably diploid cell line F3B was selected in media containing the lethal purine analogue 6-thioguanine, to generate a phenotypically HPRT- mutant, F3BT1, of presumed genotype hprt-/hprt(+), where (+) represents the presumably wild-type allele on the inactive X chromosome. Treatment of F3BT1 with 5-azacytidine resulted in phenotypic reversion to HPRT+ at a frequency greater than 10(−3). Similar treatment of 6-thioguanine-resistant control lines derived from male cells, or from CHO (which has no inactive X chromosome), had no effect on the frequency of phenotypic reversion, indicating that activation of the hprt(+) allele, rather than reversion of the hprt- is responsible. This conclusion is substantiated by documentation of the low mutagenic capacity of 5-azacytidine in this system. Proof that the hprt(+) allele can be activated by 5-azacytidine treatment was obtained in somatic cell hybrids in which hprt gene products from the active and inactive X chromosomes could be distinguished by isoelectric focusing. Our results demonstrate that X-linked gene activation associated with generalized DNA demethylation occurs with high frequency in transformed diploid Chinese hamster cells.

1989 ◽  
Vol 9 (4) ◽  
pp. 1635-1641 ◽  
Author(s):  
S G Grant ◽  
R G Worton

We have investigated the genetic activation of the hprt (hypoxanthine-guanine phosphoribosyltransferase) gene located on the inactive X chromosome in primary and transformed female diploid Chinese hamster cells after treatment with the DNA methylation inhibitor 5-azacytidine (5azaCR). Mutants deficient in HPRT were first selected by growth in 6-thioguanine from two primary fibroblast cell lines and from transformed lines derived from them. These HPRT- mutants were then treated with 5azaCR and plated in HAT (hypoxanthine-methotrexate-thymidine) medium to select for cells that had reexpressed the hprt gene on the inactive X chromosome. Contrary to previous results with primary human cells, 5azaCR was effective in activating the hprt gene in primary Chinese hamster fibroblasts at a low but reproducible frequency of 2 x 10(-6) to 7 x 10(-6). In comparison, the frequency in independently derived transformed lines varied from 1 x 10(-5) to 5 x 10(-3), consistently higher than in the nontransformed cells. This increase remained significant when the difference in growth rates between the primary and transformed lines was taken into account. Treatment with 5azaCR was also found to induce transformation in the primary cell lines but at a low frequency of 4 x 10(-7) to 8 x 10(-7), inconsistent with a two-step model of transformation followed by gene activation to explain the derepression of hprt in primary cells. Thus, these results indicate that upon transformation, the hprt gene on the inactive Chinese hamster X chromosome is rendered more susceptible to action by 5azaCR, consistent with a generalized DNA demethylation associated with the transformation event or with an increase in the instability of an underlying primary mechanism of X inactivation.


1989 ◽  
Vol 9 (4) ◽  
pp. 1635-1641
Author(s):  
S G Grant ◽  
R G Worton

We have investigated the genetic activation of the hprt (hypoxanthine-guanine phosphoribosyltransferase) gene located on the inactive X chromosome in primary and transformed female diploid Chinese hamster cells after treatment with the DNA methylation inhibitor 5-azacytidine (5azaCR). Mutants deficient in HPRT were first selected by growth in 6-thioguanine from two primary fibroblast cell lines and from transformed lines derived from them. These HPRT- mutants were then treated with 5azaCR and plated in HAT (hypoxanthine-methotrexate-thymidine) medium to select for cells that had reexpressed the hprt gene on the inactive X chromosome. Contrary to previous results with primary human cells, 5azaCR was effective in activating the hprt gene in primary Chinese hamster fibroblasts at a low but reproducible frequency of 2 x 10(-6) to 7 x 10(-6). In comparison, the frequency in independently derived transformed lines varied from 1 x 10(-5) to 5 x 10(-3), consistently higher than in the nontransformed cells. This increase remained significant when the difference in growth rates between the primary and transformed lines was taken into account. Treatment with 5azaCR was also found to induce transformation in the primary cell lines but at a low frequency of 4 x 10(-7) to 8 x 10(-7), inconsistent with a two-step model of transformation followed by gene activation to explain the derepression of hprt in primary cells. Thus, these results indicate that upon transformation, the hprt gene on the inactive Chinese hamster X chromosome is rendered more susceptible to action by 5azaCR, consistent with a generalized DNA demethylation associated with the transformation event or with an increase in the instability of an underlying primary mechanism of X inactivation.


1975 ◽  
Vol 55 (3) ◽  
pp. 671-680 ◽  
Author(s):  
June L. Biedler ◽  
Hansjörg Riehm ◽  
Robert H. F. Peterson ◽  
Barbara A. Spengler

1992 ◽  
Vol 12 (9) ◽  
pp. 3819-3826 ◽  
Author(s):  
T Sasaki ◽  
R S Hansen ◽  
S M Gartler

Reactivation of the hypoxanthine phosphoribosyltransferase (HPRT) gene on an inactive human X chromosome in a somatic cell hybrid was analyzed following exposure to 5-aza-2'-deoxycytidine. Hemimethylation and chromatin hypersensitivity in the 5' CpG island appeared by 6 h after exposure and continued to increase for 24 h in an exponentially growing cell culture. These results imply that the conformation of inactive chromatin requires a symmetrically methylated 5' G+C-rich promoter region. In addition, quantitative analysis of the time course patterns suggest that chromatin sensitivity changes may depend on strand-specific demethylation. Symmetrically demethylated DNA was first detected at 24 h and continued to increase until 48 h. HPRT mRNA was first detected at 24 h and increased in a biphasic pattern until 48 h. These results suggest that hemimethylation permits nuclease attack but not transcription factor binding, which requires symmetrically demethylated DNA. We also show that in G1-arrested cells, 5-aza-2'-deoxycytidine has no effect on methylation, chromatin conformation, or transcription. We conclude that reactivation of the HPRT gene present on the inactive X chromosome of a somatic cell hybrid involves the initial events of DNA hemimethylation and chromatin hypersensitivity at the 5' CpG island, followed by symmetrical demethylation and transcriptional reactivation.


Science ◽  
1966 ◽  
Vol 152 (3721) ◽  
pp. 519-521 ◽  
Author(s):  
W. C. Dewey ◽  
B. A. Sedita ◽  
R. M. Humphrey

1994 ◽  
Vol 14 (12) ◽  
pp. 7975-7983
Author(s):  
J G Park ◽  
V M Chapman

Inactive-X-chromosome genes in mammalian females have methylated CpG islands. We have questioned whether there are variable levels of cytosine methylation at different CpG sites within the island that might indicate the presence of primary sites of methylation which may be critical for the maintenance of gene repression and candidate sites for the initiation of inactivation. To address these questions, we have analyzed the methylation patterns of 32 CpG sites of the X-linked hypoxanthine phosphoribosyltransferase (Hprt) gene on the active and inactive X chromosomes of mouse tissues and cell lines, using genomic sequencing of bisulfite-treated genomic DNA. Cytosine is deaminated by bisulfite, but methylcytosine is not affected. Cell lines that were heterozygous for the Hprt deletion mutation (Hprtb-m3) and a functional Hprt allele were selected with 6-thioguanine. The resulting cell populations uniformly carry the intact Hprt allele on the inactive X chromosome. The methylation of these CpG sites was determined either by the direct sequence analysis of bisulfite-treated and amplified DNA or by the sequence analysis of clones derived from the amplified DNA. No CpG methylation was detected on the active Hprt genes from either males or the active X chromosome of females. On average, 22 CpGs were methylated in the other 50% of female DNA, and the level of methylation at individual sites varied from 42 to 100%. Analysis of the inactive Hprt gene in two cell lines showed that averages of 14 and 18 CpGs were methylated and that the frequency of methylation at 32 individual sites ranged from 3 to 100%. The highest frequency of methylation in cell lines coincided with the sequences flanking transcription initiation sites. These results suggest that methylation patterns are heterogeneous within a tissue and even in clonal cell populations and that specific subsets of CpG sites sustain high methylation frequencies which may be critical for the maintenance of X-chromosome inactivation. The bisulfite method identified which CpG sites were methylated on the inactive X chromosome, and it provided a quantitative estimate of the frequency of methylation of these sites in genomic DNA.


1992 ◽  
Vol 12 (9) ◽  
pp. 3819-3826
Author(s):  
T Sasaki ◽  
R S Hansen ◽  
S M Gartler

Reactivation of the hypoxanthine phosphoribosyltransferase (HPRT) gene on an inactive human X chromosome in a somatic cell hybrid was analyzed following exposure to 5-aza-2'-deoxycytidine. Hemimethylation and chromatin hypersensitivity in the 5' CpG island appeared by 6 h after exposure and continued to increase for 24 h in an exponentially growing cell culture. These results imply that the conformation of inactive chromatin requires a symmetrically methylated 5' G+C-rich promoter region. In addition, quantitative analysis of the time course patterns suggest that chromatin sensitivity changes may depend on strand-specific demethylation. Symmetrically demethylated DNA was first detected at 24 h and continued to increase until 48 h. HPRT mRNA was first detected at 24 h and increased in a biphasic pattern until 48 h. These results suggest that hemimethylation permits nuclease attack but not transcription factor binding, which requires symmetrically demethylated DNA. We also show that in G1-arrested cells, 5-aza-2'-deoxycytidine has no effect on methylation, chromatin conformation, or transcription. We conclude that reactivation of the HPRT gene present on the inactive X chromosome of a somatic cell hybrid involves the initial events of DNA hemimethylation and chromatin hypersensitivity at the 5' CpG island, followed by symmetrical demethylation and transcriptional reactivation.


Sign in / Sign up

Export Citation Format

Share Document