tumor cell line
Recently Published Documents


TOTAL DOCUMENTS

1100
(FIVE YEARS 176)

H-INDEX

69
(FIVE YEARS 4)

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Paul Prasse ◽  
Pascal Iversen ◽  
Matthias Lienhard ◽  
Kristina Thedinga ◽  
Chris Bauer ◽  
...  

ABSTRACT Computational drug sensitivity models have the potential to improve therapeutic outcomes by identifying targeted drug components that are likely to achieve the highest efficacy for a cancer cell line at hand at a therapeutic dose. State of the art drug sensitivity models use regression techniques to predict the inhibitory concentration of a drug for a tumor cell line. This regression objective is not directly aligned with either of these principal goals of drug sensitivity models: We argue that drug sensitivity modeling should be seen as a ranking problem with an optimization criterion that quantifies a drug’s inhibitory capacity for the cancer cell line at hand relative to its toxicity for healthy cells. We derive an extension to the well-established drug sensitivity regression model PaccMann that employs a ranking loss and focuses on the ratio of inhibitory concentration and therapeutic dosage range. We find that the ranking extension significantly enhances the model’s capability to identify the most effective anticancer drugs for unseen tumor cell profiles based in on in-vitro data.


2021 ◽  
Vol 23 (1) ◽  
pp. 231
Author(s):  
Eva Havránková ◽  
Vladimír Garaj ◽  
Šárka Mascaretti ◽  
Andrea Angeli ◽  
Zuzana Soldánová ◽  
...  

A series of 1,3,5-triazinyl aminobenzenesulfonamides substituted by aminoalcohol, aminostilbene, and aminochalcone structural motifs was synthesized as potential human carbonic anhydrase (hCA) inhibitors. The compounds were evaluated on their inhibition of tumor-associated hCA IX and hCA XII, hCA VII isoenzyme present in the brain, and physiologically important hCA I and hCA II. While the test compounds had only a negligible effect on physiologically important isoenzymes, many of the studied compounds significantly affected the hCA IX isoenzyme. Several compounds showed activity against hCA XII; (E)-4-{2-[(4-[(2,3-dihydroxypropyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (31) and (E)-4-{2-[(4-[(4-hydroxyphenyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (32) were the most effective inhibitors with KIs = 4.4 and 5.9 nM, respectively. In addition, the compounds were tested against vancomycin-resistant Enterococcus faecalis (VRE) isolates. (E)-4-[2-({4-[(4-cinnamoylphenyl)amino]-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]benzenesulfonamide (21) (MIC = 26.33 µM) and derivative 32 (MIC range 13.80–55.20 µM) demonstrated the highest activity against all tested strains. The most active compounds were evaluated for their cytotoxicity against the Human Colorectal Tumor Cell Line (HCT116 p53 +/+). Only 4,4’-[(6-chloro-1,3,5-triazin-2,4-diyl)bis(iminomethylene)]dibenzenesulfonamide (7) and compound 32 demonstrated an IC50 of ca. 6.5 μM; otherwise, the other selected derivatives did not show toxicity at concentrations up to 50 µM. The molecular modeling and docking of active compounds into various hCA isoenzymes, including bacterial carbonic anhydrase, specifically α-CA present in VRE, was performed to try to outline a possible mechanism of selective anti-VRE activity.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1427
Author(s):  
Marina Gobbe Moschetta-Pinheiro ◽  
Jucimara Colombo ◽  
Bianca Lara Venâncio de Godoy ◽  
Julia Ferreira Balan ◽  
Bianca Carlos Nascimento ◽  
...  

Breast cancer is the most prevalent tumor type among women and female dogs. Tumor malignancy is characterized by the epithelial-to-mesenchymal transition (EMT) which leads to the metastasis formation. The inhibition of angiotensin II type I receptor (AGTR1) by an antagonist such as losartan can suppress angiogenesis, consequently contributing to the metastasis control. The aim of this study was to analyze the capacity of losartan and AGTR-1 gene edition to modulate the EMT process in triple negative/metastatic mammary tumor cells, compared to existing treatment protocols such as carboplatin. The cell lines CF41.Mg and MDA-MB-468, were cultured and treated with carboplatin, losartan, or submitted to AGTR-1 gene edition by CRISPR/Cas9. EMT markers and PARP-1 protein and gene expression were evaluated by immunofluorescence or immunocytochemistry and qRT-PCR, respectively. Cell migration capacity was also evaluated. For CF41.Mg and MDA-MB-468 cell lines, there was an increase in E-cadherin and a decrease in N-cadherin and PARP-1 protein and gene expression after treatment with carboplatin, losartan, both in combination and after AGTR-1 gene edition. There was a decrease in VEGF and PARP-1 protein and gene expression after AGTR-1 gene edition. Moreover, in both lines, reduction in invasion rate was observed after all treatments. Our data suggest that losartan and the gene edition of AGTR-1 by CRISPR/Cas9 were able to block the DNA repair and control the EMT process, such as carboplatin. The results in the canine species are unprecedented, as there are no data in the literature that demonstrate the action of losartan in this tumor type.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2088
Author(s):  
Andrea Vasas ◽  
Ildikó Lajter ◽  
Norbert Kúsz ◽  
Sándor Balázs Király ◽  
Tibor Kovács ◽  
...  

Seven new germacranolides (1–3, 5–8), among them a heterodimer (7), and known germacranolide (4), eudesmane (9) and isodaucane (10) sesquiterpenes were isolated from the aerial parts of Neurolaena lobata. Their structures were determined by using a combination of different spectroscopic methods, including HR-ESIMS and 1D and 2D NMR techniques supported by DFT-NMR calculations. The enantiomeric purity of the new compounds was investigated by chiral HPLC analysis, while their absolute configurations were determined by TDDFT-ECD and OR calculations. Due to the conformationally flexible macrocycles and difficulties in assigning the relative configuration, 13C and 1H NMR chemical shift and ECD and OR calculations were performed on several stereoisomers of two derivatives. The isolated compounds (1–10) were shown to have noteworthy antiproliferative activities against three human cervical tumor cell line with different HPV status (HeLa, SiHa and C33A). Additionally, lobatolide C (6) exhibited substantial antiproliferative properties, antimigratory effect, and it induced cell cycle disturbance in SiHa cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lihua Yao ◽  
Qin Wang ◽  
Runjie Zhang ◽  
Xingyun Wang ◽  
Yiwen Liu ◽  
...  

Polycystic ovary syndrome (PCOS) is a complex reproductive, endocrine, and metabolic disorder in reproductive-age women. In order to explore the active metabolites of brown adipose tissue (BAT) transplantation in improving the reproductive and metabolic phenotypes in a PCOS rat model, the metabolites in the recipient’s BAT were explored using the liquid chromatography–mass spectrometry technique. In total, 9 upregulated and 13 downregulated metabolites were identified. They were roughly categorized into 12 distinct classes, mainly including glycerophosphoinositols, glycerophosphocholines, and sphingolipids. Ingenuity pathway analysis predicted that these differentially metabolites mainly target the PI3K/AKT, MAPK, and Wnt signaling pathways, which are closely associated with PCOS. Furthermore, one of these differential metabolites, sphingosine belonging to sphingolipids, was randomly selected for further experiments on a human granulosa-like tumor cell line (KGN). It significantly accelerated the apoptosis of KGN cells induced by dihydrotestosterone. Based on these findings, we speculated that metabolome changes are an important process for BAT transplantation in improving PCOS. It might be a novel therapeutic target for PCOS treatment.


Author(s):  
Alessio Cardinale ◽  
Serena Saladini ◽  
Leonardo Lupacchini ◽  
Irene Ruspantini ◽  
Chiara De Dominicis ◽  
...  

Abstract Background Emerging evidence suggest that DNA-PK complex plays a role in the cellular response to oxidative stress, in addition to its function of double strand break (DSB) repair. In this study we evaluated whether DNA-PK participates in oxidative stress response and whether this role is independent of its function in DNA repair. Methods and results We used a model of H2O2-induced DNA damage in PC12 cells (rat pheochromocytoma), a well-known neuronal tumor cell line. We found that H2O2 treatment of PC12 cells induces an increase in DNA-PK protein complex levels, along with an elevation of DNA damage, measured both by the formation of γΗ2ΑX foci, detected by immunofluorescence, and γH2AX levels detected by western blot analysis. After 24 h of cell recovery, γΗ2ΑX foci are repaired both in the absence and presence of DNA-PK kinase inhibitor NU7026, while an increase of apoptotic cells is observed when DNA-PK activity is inhibited, as revealed by counting pycnotic nuclei and confirmed by FACS analysis. Our results suggest a role of DNA-PK as an anti-apoptotic factor in proliferating PC12 cells under oxidative stress conditions. The anti-apoptotic role of DNA-PK is associated with AKT phosphorylation in Ser473. On the contrary, in differentiated PC12 cells, were the main pathway to repair DSBs is DNA-PK-mediated, the inhibition of DNA-PK activity causes an accumulation of DNA damage. Conclusions Taken together, our results show that DNA-PK can protect cells from oxidative stress induced-apoptosis independently from its function of DSB repair enzyme. Graphical Abstract


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Madeline Mori ◽  
Amanda Frugoli ◽  
Udesh Shah ◽  
Brad Barrows ◽  
Tricia Westhoff ◽  
...  

In contrast to pituitary adenomas, pituitary carcinomas represent a rare malignant neoplasm with a remarkable high mortality. Pituitary carcinomas can arise from any pituitary tumor cell line and are determined to be carcinomas when there is distant metastasis or central nervous system dissemination. In this case vignette, we describe a rare case of malignant prolactinoma with intraspinal metastasis, and we also provide a review of relevant literature and treatment.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3052
Author(s):  
Roberta Rinaldi ◽  
Rocchina Miglionico ◽  
Ilaria Nigro ◽  
Rosarita D’Orsi ◽  
Lucia Chiummiento ◽  
...  

Background: Several pre-clinical and clinical reports suggest that HIV-1 protease inhibitors, in addition to the antiretroviral properties, possess pleiotropic pharmacological effects including anticancer action. Therefore, we investigated the pro-apoptotic activity in tumor cells of two molecules, RDD-19 and RDD-142, which are hydroxyethylamine derivatives’ precursors of darunavir and several HIV-1 protease inhibitors. Methods: Three hepatoma cell lines and one non-pathological cell line were treated with RDD-19 and RDD-142, and cell viability was assessed. The expression levels of several markers for ER stress, autophagy, cellular ubiquitination, and Akt activation were quantified in HepG2 cells treated with RDD-19 and RDD-142 to evaluate apoptotic and non-apoptotic cell death. Results: RDD-19 and RDD-142 showed a greater dose-dependent cytotoxicity towards the hepatic tumor cell line HepG2 compared to the non-pathological hepatic cell line IHH. Both molecules caused two types of cell death, a caspase-dependent apoptosis, which was ascertained by a series of biochemical and morphological assays, and a caspase-independent death that was characterized by the induction of ER stress and autophagy. The strong increase of ubiquitinated proteins inside the cells suggested that the target of these molecules could be the proteasome and in silico molecular docking analysis that was used to support the plausibility of this hypothesis. Furthermore, cells treated with the two compounds displayed decreased levels of p-AKT, which interferes with cell survival and proliferation. Conclusions: These findings demonstrate that two compounds, RDD-19 and RDD-142, have pleiotropic effects and that they may represent promising anticancer candidates.


Sign in / Sign up

Export Citation Format

Share Document