scholarly journals Molecular cloning and sequence of Sparus aurata skeletal myosin light chains expressed in white muscle: developmental expression and thyroid regulation

2001 ◽  
Vol 204 (17) ◽  
pp. 3009-3018 ◽  
Author(s):  
Katerina A. Moutou ◽  
Adelino V. M. Canario ◽  
Zissis Mamuris ◽  
Deborah M. Power

SUMMARY Two full-length cDNA clones encoding the skeletal myosin light chain 2 (MLC2; 1452bp) and myosin light chain 3 (MLC3; 972bp) were isolated from a cDNA library prepared from gilthead sea bream Sparus aurata larvae. The MLC2 cDNA encoded a predicted protein of 170 residues that was 79% identical to rabbit MLC2 over the entire length and 87% identical within the Ca2+-binding region. The deduced amino acid sequence of MLC3 was 153 residues in length and was 91% and 69% identical to the zebrafish and rabbit MLC3, respectively. Northern blot analysis revealed that in adults both transcripts were expressed in fast white muscle only. MLC2 appeared earlier in development: MLC2 transcripts were detectable from the beginning of segmentation, whereas MLC3 transcripts did not appear until 27h post-fertilisation. At this developmental stage, a second MLC2 transcript of 0.89 kilobase-pairs was present. MLCs exhibited a different age-related pattern of response to varied thyroidal states, which were experimentally induced by the administration of 1μgg−1bodymass of thyroxine (T4) or triiodothyronine (T3), or 5ngg−1bodymass of the hypothyroidal compound thiourea; MLC3 expression was not significantly affected, whereas levels of MLC2 transcripts were significantly elevated in the white muscle only of juvenile sea bream after administration of T4. Although the mechanism of thyroidal regulation of MLC expression remains unknown, the present results suggest that different regulatory mechanisms exist for different MLCs.

Aquaculture ◽  
2014 ◽  
Vol 432 ◽  
pp. 434-442 ◽  
Author(s):  
Stella Georgiou ◽  
Pavlos Makridis ◽  
Dimitris Dimopoulos ◽  
Deborah M. Power ◽  
Zissis Mamuris ◽  
...  

1988 ◽  
Vol 8 (2) ◽  
pp. 1006-1009 ◽  
Author(s):  
M Shani ◽  
I Dekel ◽  
O Yoffe

The expression of the rat skeletal myosin light-chain 2 gene in two transgenic strains was tissue specific and stage specific. However, the temporal regulation during development of the transgene was different from that of the endogenous gene. Surprisingly, in one strain, the expression of the transgene was associated with a significant down-regulation of the endogenous gene. The possible mechanisms to account for the suppression of the endogenous gene and the potential implications of this suppression are discussed.


1985 ◽  
Vol 5 (11) ◽  
pp. 3058-3068
Author(s):  
V P Parker ◽  
S Falkenthal ◽  
N Davidson

Recombinant DNA clones encoding the Drosophila melanogaster homolog of the vertebrate myosin light-chain-2 (MLC-2) gene have been isolated. This single-copy gene maps to the chromosomal locus 99E. The nucleotide sequence was determined for a 3.4-kilobase genomic fragment containing the gene and for two MLC-2 cDNA clones generated from late pupal mRNA. Comparison of these sequences shows that the gene contains two introns, the positions of which are conserved in the corresponding rat sequence. Extension of a primer homologous to the mRNA reveals two start sites for transcription 12 nucleotides apart. The sequence TATA is not present ahead of the mRNA cap site. There are two major sites of poly(A) addition separated by 356 nucleotides. The protein sequence derived from translation of the cDNA sequence shows a high degree of homology with that for the DTNB myosin light chain (MLC-2) of chicken. A lower degree of sequence homology was seen in comparisons with other evolutionarily related calcium-binding proteins. RNA blots show high levels of expression of several transcripts during the developmental time stages when muscle is being produced. In vitro translation of hybrid-selected RNA produces two polypeptides which comigrate on two-dimensional gels with proteins from Drosophila actomyosin, although the cDNA sequence reveals only one 26-kilodalton primary translation product.


1988 ◽  
Vol 8 (2) ◽  
pp. 1006-1009
Author(s):  
M Shani ◽  
I Dekel ◽  
O Yoffe

The expression of the rat skeletal myosin light-chain 2 gene in two transgenic strains was tissue specific and stage specific. However, the temporal regulation during development of the transgene was different from that of the endogenous gene. Surprisingly, in one strain, the expression of the transgene was associated with a significant down-regulation of the endogenous gene. The possible mechanisms to account for the suppression of the endogenous gene and the potential implications of this suppression are discussed.


1985 ◽  
Vol 5 (11) ◽  
pp. 3058-3068 ◽  
Author(s):  
V P Parker ◽  
S Falkenthal ◽  
N Davidson

Recombinant DNA clones encoding the Drosophila melanogaster homolog of the vertebrate myosin light-chain-2 (MLC-2) gene have been isolated. This single-copy gene maps to the chromosomal locus 99E. The nucleotide sequence was determined for a 3.4-kilobase genomic fragment containing the gene and for two MLC-2 cDNA clones generated from late pupal mRNA. Comparison of these sequences shows that the gene contains two introns, the positions of which are conserved in the corresponding rat sequence. Extension of a primer homologous to the mRNA reveals two start sites for transcription 12 nucleotides apart. The sequence TATA is not present ahead of the mRNA cap site. There are two major sites of poly(A) addition separated by 356 nucleotides. The protein sequence derived from translation of the cDNA sequence shows a high degree of homology with that for the DTNB myosin light chain (MLC-2) of chicken. A lower degree of sequence homology was seen in comparisons with other evolutionarily related calcium-binding proteins. RNA blots show high levels of expression of several transcripts during the developmental time stages when muscle is being produced. In vitro translation of hybrid-selected RNA produces two polypeptides which comigrate on two-dimensional gels with proteins from Drosophila actomyosin, although the cDNA sequence reveals only one 26-kilodalton primary translation product.


Sign in / Sign up

Export Citation Format

Share Document