scholarly journals Genomic Organization, Intronic Duplications, and Promoter Characteristics of the Fast Skeletal Myosin Light Chain-2 Gene (mlc2f) from Javanese Ricefish Oryzias javanicus

2012 ◽  
Vol 15 (4) ◽  
pp. 325-335
Author(s):  
Sang Yoon Lee ◽  
Dong Soo Kim ◽  
Yoon Kwon Nam
1988 ◽  
Vol 8 (2) ◽  
pp. 1006-1009 ◽  
Author(s):  
M Shani ◽  
I Dekel ◽  
O Yoffe

The expression of the rat skeletal myosin light-chain 2 gene in two transgenic strains was tissue specific and stage specific. However, the temporal regulation during development of the transgene was different from that of the endogenous gene. Surprisingly, in one strain, the expression of the transgene was associated with a significant down-regulation of the endogenous gene. The possible mechanisms to account for the suppression of the endogenous gene and the potential implications of this suppression are discussed.


2001 ◽  
Vol 204 (17) ◽  
pp. 3009-3018 ◽  
Author(s):  
Katerina A. Moutou ◽  
Adelino V. M. Canario ◽  
Zissis Mamuris ◽  
Deborah M. Power

SUMMARY Two full-length cDNA clones encoding the skeletal myosin light chain 2 (MLC2; 1452bp) and myosin light chain 3 (MLC3; 972bp) were isolated from a cDNA library prepared from gilthead sea bream Sparus aurata larvae. The MLC2 cDNA encoded a predicted protein of 170 residues that was 79% identical to rabbit MLC2 over the entire length and 87% identical within the Ca2+-binding region. The deduced amino acid sequence of MLC3 was 153 residues in length and was 91% and 69% identical to the zebrafish and rabbit MLC3, respectively. Northern blot analysis revealed that in adults both transcripts were expressed in fast white muscle only. MLC2 appeared earlier in development: MLC2 transcripts were detectable from the beginning of segmentation, whereas MLC3 transcripts did not appear until 27h post-fertilisation. At this developmental stage, a second MLC2 transcript of 0.89 kilobase-pairs was present. MLCs exhibited a different age-related pattern of response to varied thyroidal states, which were experimentally induced by the administration of 1μgg−1bodymass of thyroxine (T4) or triiodothyronine (T3), or 5ngg−1bodymass of the hypothyroidal compound thiourea; MLC3 expression was not significantly affected, whereas levels of MLC2 transcripts were significantly elevated in the white muscle only of juvenile sea bream after administration of T4. Although the mechanism of thyroidal regulation of MLC expression remains unknown, the present results suggest that different regulatory mechanisms exist for different MLCs.


1988 ◽  
Vol 8 (2) ◽  
pp. 1006-1009
Author(s):  
M Shani ◽  
I Dekel ◽  
O Yoffe

The expression of the rat skeletal myosin light-chain 2 gene in two transgenic strains was tissue specific and stage specific. However, the temporal regulation during development of the transgene was different from that of the endogenous gene. Surprisingly, in one strain, the expression of the transgene was associated with a significant down-regulation of the endogenous gene. The possible mechanisms to account for the suppression of the endogenous gene and the potential implications of this suppression are discussed.


1994 ◽  
Vol 269 (24) ◽  
pp. 16961-16970
Author(s):  
S.W. Kubalak ◽  
W.C. Miller-Hance ◽  
T.X. O'Brien ◽  
E. Dyson ◽  
K.R. Chien

2015 ◽  
Vol 93 (1) ◽  
pp. 23-32 ◽  
Author(s):  
William Gittings ◽  
Harish Aggarwal ◽  
James T. Stull ◽  
Rene Vandenboom

The isometric potentiation associated with myosin phosphorylation is force dependent. The purpose of this study was to assess the influence of a pre-existing period of isometric force on the concentric force potentiation displayed by mouse muscles with and without the ability to phosphorylate myosin. We tested isometric (ISO) and concentric (CON) potentiation, as well as concentric potentiation after isometric force (ISO-CON), in muscles from wild-type (WT) and skeletal myosin light chain kinase-deficient (skMLCK−/−) mice. A conditioning stimulus increased (i.e., potentiated) mean concentric force in the ISO-CON and CON conditions to 1.31 ± 0.02 and 1.35 ± 0.02 (WT) and to 1.19 ± 0.02 and 1.21 ± 0.01 (skMLCK−/−) of prestimulus levels, respectively (data n = 6–8, p < 0.05). No potentiation of mean isometric force was observed in either genotype. The potentiation of mean concentric force was inversely related to relative tetanic force level (P/Po) in both genotypes. Moreover, concentric potentiation varied greatly within each contraction type and was negatively correlated with unpotentiated force in both genotypes. Thus, although no effect of pre-existing force was observed, strong and inverse relationships between concentric force potentiation and unpotentiated concentric force may suggest an influence of attached and force-generating crossbridges on potentiation magnitude in both WT and skMLCK−/− muscles.


Sign in / Sign up

Export Citation Format

Share Document