Calcium Action Potentials in the Skeletal Muscle Fibres of the Stick Insect Carausius Morosus

1981 ◽  
Vol 93 (1) ◽  
pp. 257-267 ◽  
Author(s):  
FRANCES M. ASHCROFT

The ionic requirements for the generation of action potentials in the ventral longitudinal muscle fibres of the stick insect, Carausius morosus, were investigated. Ca-free Ringer rapidly and reversibly abolished the action potential. In the presence of tetraethylammonium (TEA) ions (to suppress outward currents) the overshoot of the action potential changed 26 mV for a 10-fold change in [Ca]o. The maximum rate of rise of the action potential (measured in TEA Ringer) showed saturation at high [Ca]o. Cobaltous ions (20 mM) and the organic Ca antagonist D 600 (5×10−4g/ml) reversibly inhibited the action potential; the inhibitory effect of 1 mM-La3+ was irreversible. Barium and strontium, but not magnesium, were able to substitute for calcium as charge carriers. These results suggest that an inward movement of Ca2+ underlies the action potential of Carausius fibres.

1988 ◽  
Vol 135 (1) ◽  
pp. 343-362 ◽  
Author(s):  
ANDRÉ BILBAUT ◽  
ROBERT W. MEECH ◽  
MARI-LUZ HERNANDEZ-NICAISE

1. The ionic dependence of action potentials evoked in giant smooth muscle fibres isolated by enzymatic digestion from the body wall of the marine invertebrate Beroe ovata (Ctenophora) has been investigated using conventional electrophysiological techniques. 2. Differences were observed in the two fibre types studied. The resting membrane potential was −60 ± 1.35 mV (N = 25) in longitudinal muscle fibres and −66 ±1.37 mV (N=32) in radial fibres. Action potentials had a short plateau in longitudinal fibres but not in radial fibres. 3. The action potential overshoot of both fibre types was decreased in Ca2+-free artificial sea water (ASW). In Na+-deficient ASW, action potentials could not be generated in radial fibres and showed a reduced overshoot in longitudinal fibres. 4. Tetrodotoxin (10−5moll−5) added to ASW or Ca2+-free ASW did not affect the action potentials of either type of fibre. 5. Action potentials of both fibres were partially blocked by Co2+ (20–50 mmoll−1) or Cd2+ (l-2mmoll−1). Action potentials of longitudinal fibres in Na+-deficient ASW were abolished by Co2+ (20mmoll−1). In Ca2+-free ASW, the ction potential overshoots of both sets of fibres were restored following the addition of Sr2+ or Ba2+. In longitudinal fibres, Sr2+ increased the duration of the action potential plateau. In both longitudinal and radial muscle fibres, Ba2+ prolonged the action potential. 6. In longitudinal fibres exposed to tetraethylammonium chloride (TEAC1) or 4-aminopyridine (4AP), the action potential was slightly prolonged. In these fibres, TEA+ or 4AP added to Ca2+-free ASW induced only a long-lasting depolarizing plateau. In radial fibres, the action potential duration was slightly increased in the presence of TEA+; it was unaffected by 4AP. In Ca2+-free ASW, TEA+ and 4AP induced an oscillating membrane response which appeared to be dependent on the intensity of the injected current pulse. 7. It is concluded that (a) there are significant differences between the action potentials of longitudinal and radial muscle fibres but that both are dependent on Na+ and Ca2+, (b) in longitudinal fibres, a Ca2+-activated K+ conductance and a TEA+-sensitive voltage-activated K+ conductance contribute to the repolarizing phase of the action potential, the former being predominant, (c) in radial fibres, the repolarizing phase of action potentials probably involves different membrane K+ conductances among which is a TEA+-sensitive K+ conductance.


2001 ◽  
Vol 535 (2) ◽  
pp. 579-590 ◽  
Author(s):  
Samir Majid Sheikh ◽  
Jeremy N. Skepper ◽  
Sangeeta Chawla ◽  
Jamie I. Vandenberg ◽  
Suzy Elneil ◽  
...  

1972 ◽  
Vol 56 (1) ◽  
pp. 129-137
Author(s):  
J. E. TREHERNE

1. The effects of variation in the sodium concentration of the bathing media on axonal function has been measured in de-sheathed connectives in the presence of the overlying neural fat-body sheath. 2. The response to solutions of the same sodium concentration as the haemolymph (15 mM/1) was found to be essentially similar to that recorded in de-sheathed connectives in the absence of the fat-body sheath, there being a rapid decline in amplitude of the recorded action potentials in both preparations. 3. On the basis of these observations it is concluded that the neural fat-body sheath is unlikely to be involved in the regulation of the extra-neuronal sodium level.


1979 ◽  
Vol 203 (1153) ◽  
pp. 445-457 ◽  

Pyriformis muscles of Rana temporaria were completely or partially denervated by cutting the sciatic nerve or some of the small nerve branches entering the muscle. One stimulating and one to three recording microelectrodes were inserted along the fibres in order to compare the electrical activity at these points. In an early period following denervation action potentials of variable size and shape could be observed; these action potentials were often composed of two, sometimes of three or four, components. The size of individual components depended on the position of the recording microelectrode. Individual components could occasionally be triggered separately by adjusting the strength of the stimulating current pulse; propagation of these ‘all or none’ responses was absent. In other fibres one component of the action potential could trigger another one several millimetres apart, thus indicating propagation. Conduction velocities were approximately 0.4 m/s. In partially denervated slow fibres, endplate potentials were confined to one lateral segment of the fibres, while the action potential occupied the denervated part of the membrane. The amplitudes of endplate and action potentials varied inversely with distance. Rough estimates of the length constant of the slow fibre membrane were calculated from the spatial decay of action potentials, endplate potentials and hyperpolarizing electrotonic potentials; mean values obtained were 2.5, 4.8 and 7.7 mm respectively. The results suggest that following denervation Na channels are built into discrete areas of the slow fibre membrane and that this process depends on the amount of denervation in individual fibres.


Sign in / Sign up

Export Citation Format

Share Document