scholarly journals Present State of Nuclear Fusion Research and Prospects for the Future

Author(s):  
B E Keen ◽  
M L Watkins

This paper traces the development of nuclear fusion research and describes the basic principles involved. The most advanced device used to achieve controlled thermonuclear fusion is the magnetic confinement approach, utilizing the tokamak concept. The Joint European Torus (JET) is the largest tokamak in operation. The operating conditions are described and critical issues outlined. With concerted effort and international collaboration the possibility exists to produce a demonstration reactor.

Vacuum ◽  
1975 ◽  
Vol 25 (11-12) ◽  
pp. 497-511 ◽  
Author(s):  
H Winter

2014 ◽  
Vol 1042 ◽  
pp. 58-64 ◽  
Author(s):  
Santanu Sardar ◽  
Santanu Kumar Karmakar ◽  
Debdulal Das

Metal matrix nanocomposites (MMNCs) have emerged as an important class of materials for structural applications specifically in the automobile and aerospace sectors; however, development of cost effective mass production technique of MMNCs with requisite operational and geometrical flexibilities is still a great challenge. Focused research in the last decade has highlighted that ultrasonic cavitation based processing is the most promising method for manufacturing of MMNCs with nearly uniform distribution of nanoparticles, having added advantage of being a liquid-phase route. This article presents an overview on the basic principles and recent advances in the ultrasonic cavitation based processing of MMNCs with a particular emphasis on identifying relationships amongst processing variables, microstructural parameters and mechanical properties. Critical issues of MMNCs fabrication are discussed.


2021 ◽  
Vol 22 (4) ◽  
pp. 171-180
Author(s):  
V. B. Melekhin ◽  
M. V. Khachumov

We formulate the basic principles of constructing a sign-signal control for the expedient behavior of autonomous intelligent agents in a priori undescribed conditions of a problematic environment. We clarify the concept of a self-organizing autonomous intelligent agent as a system capable of automatic goal-setting when a certain type of conditional and unconditional signal — signs appears in a problem environment. The procedures for planning the expedient behavior of autonomous intelligent agents have been developed, that imitate trial actions under uncertainty in the process of studying the regularities of transforming situations in a problem environment, which allows avoiding environmental changes in the process of self-learning that are not related to the achievement of a given goal. Boundary estimates of the proposed procedures complexity for planning expedient behavior are determined, confirming the possibility of their effective implementation on the on-board computer of the automatic control system for the expedient activity of autonomous intelligent agents. We carry out an imitation on a personal computer of the proposed procedures for planning purposeful behavior, confirming the effectiveness of their use to build intelligent problem solvers for autonomous intelligent agents in order to endow them with the ability to adapt to a priori undescribed operating conditions. The main types of connections between various conditional and unconditional signal — signs of a problem environment are structured, which allows autonomous intelligent agents to adapt to complex a priori undescribed and unstable conditions of functioning.


1989 ◽  
Vol 29 (3) ◽  
pp. 489-534 ◽  
Author(s):  
R.R. Parker ◽  
J. Sheffield ◽  
M. Wakatani ◽  
J.-P. Watteau ◽  
G. Grieger

Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Paolo Silvestri ◽  
Mario L. Ferrari ◽  
Aristide Fausto Massardo

Abstract Compressor response investigation in nearly unstable operating conditions, like rotating stall and incipient surge, is a challenging topic nowadays in the turbomachinery research field. Indeed, turbines connected with large-size volumes are affected by critical issues related to surge prevention, particularly during transient operations. Advanced signal-processing operations conducted on vibrational responses provide an insight into possible diagnostic and predictive solutions which can be derived from accelerometer measurements. Indeed, vibrational investigation is largely employed in rotating-machine diagnostics together with time-frequency analysis such as smoothed pseudo-Wigner Ville (SPWVD) time-frequency distribution (TFD) considered in this paper. It is characterized by excellent time and frequency resolutions and thus it is effectively employed in numerous applications in the condition monitoring of machinery. The aim and the innovation of this work regards SPWVD utilization to study turbomachinery behavior in detail in order to identify incipient surge conditions in the centrifugal compressor starting from operational vibrational responses measured at significant plant locations. To this aim, an experimental campaign has been conducted on a T100 microturbine connected with different volume sizes to collect significant data to be analyzed. The results show that SPWVD is able to successfully identify system evolution towards an unstable condition, by recognizing different levels and features of the particular kind of instability that is going to take place within the plant. Instability phenomena regarding rolling bearings have also been identified and their interaction with surge onset has been investigated for diagnostic purposes.


Sign in / Sign up

Export Citation Format

Share Document