matrix nanocomposites
Recently Published Documents


TOTAL DOCUMENTS

665
(FIVE YEARS 216)

H-INDEX

55
(FIVE YEARS 13)

Friction ◽  
2022 ◽  
Author(s):  
Shuaihang Pan ◽  
Kaiyuan Jin ◽  
Tianlu Wang ◽  
Zhinan Zhang ◽  
Long Zheng ◽  
...  

AbstractMetal matrix nanocomposites (MMNCs) become irreplaceable in tribology industries, due to their supreme mechanical properties and satisfactory tribological behavior. However, due to the dual complexity of MMNC systems and tribological process, the anti-friction and anti-wear mechanisms are unclear, and the subsequent tribological performance prediction and design of MMNCs are not easily possible: A critical up-to-date review is needed for MMNCs in tribology. This review systematically summarized the fabrication, manufacturing, and processing techniques for high-quality MMNC bulk and surface coating materials in tribology. Then, important factors determining the tribological performance (mainly anti-friction evaluation by the coefficient of friction (CoF) and anti-wear assessment with wear rate) in MMNCs have been investigated thoroughly, and the correlations have been analyzed to reveal their potential coupling/synergetic roles of tuning tribological behavior of MMNCs. Most importantly, this review combined the classical metal/alloy friction and wear theories and adapted them to give a (semi-)quantitative description of the detailed mechanisms of improved anti-friction and anti-wear performance in MMNCs. To guarantee the universal applications of these mechanisms, their links with the analyzed influencing factors (e.g., loading forces) and characteristic features like tribo-film have been clarified. This approach forms a solid basis for understanding, predicting, and engineering MMNCs’ tribological behavior, instead of pure phenomenology and experimental observation. Later, the pathway to achieve a broader application for MMNCs in tribo-related fields like smart materials, biomedical devices, energy storage, and electronics has been concisely discussed, with the focus on the potential development of modeling, experimental, and theoretical techniques in MMNCs’ tribological processes. In general, this review tries to elucidate the complex tribo-performances of MMNCs in a fundamentally universal yet straightforward way, and the discussion and summary in this review for the tribological performance in MMNCs could become a useful supplementary to and an insightful guidance for the current MMNC tribology study, research, and engineering innovations.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2004
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Amir Abdullah

Metal matrix nanocomposites are a newly developed materials with promising applications in a wide variety of areas, ranging from medical to aerospace structures, owing to their lightweight high-strength properties. A light metal like aluminum is usually strengthened by a reinforcing agent of carbides, nitrides, oxides, carbon-based materials, or even elementals to boost the mechanical performance without sacrificing lightweight; however, almost all reinforcing nanomaterials are commonly poorly wetted by metals leading to agglomerations, clusterings, among other problems, with diminished ductility and overall mechanical performance. To tackle the mentioned problems, a number of strategies including coatings, thermal, mechanical, or chemical treatments may be followed. In the present study, a particular focus is paid on the mechanical dispersion of nano-silica particles in a molten A356 alloy through applying high-intensity ultrasonic agitations in order to improve dispersibility, wettability, and interfacial affinity. Nano-silica being an inexpensive high-strength nanomaterial is added to an A356 aluminum alloy melt and then dispersed and distributed by a 2-kW power ultrasonic system. Experimental results including microscopic observations and those mechanical experimentations revealed that the ultrasonication of the aforesaid solid–liquid system may greatly improve the affinity between the de-agglomerated nano-silica particles and the host aluminum matrix with enhanced ductility.


Author(s):  
Pallav Gupta ◽  
Naseem Ahamad ◽  
Jimmy Mehta ◽  
Devendra Kumar ◽  
Mumtaz A Quraishi ◽  
...  

In the present work, metal matrix nanocomposites are being prepared using Fe as base material reinforced with Al2O3 and doped with CeO2. Nanocomposite specimens were synthesized using powder metallurgy technique. Tafel Polarization, Corrosion Behavior and its optimization using Analysis of Variance (ANOVA) as well as Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) along with Phase and Microstructure of prepared samples have been investigated. It was observed that corrosion rate and corrosion current density was highest for pure Fe samples whereas 1.0% CeO2 doped Fe-Al2O3 metal matrix nanocomposite system showed the formation of nano amorphous layer on the specimen surface. Analysis of Variance shows that the different compositions of samples have changed outcome on corrosion behavior. Technique for Order of Preference by Similarity to Ideal Solution analysis shows ordered preference of sample as per the readings of corrosion rate.


Author(s):  
Prem Sagar ◽  
Amit Handa ◽  
Gitesh Kumar

Reinforced magnesium metal matrix nanocomposites (MMMNCs) have piqued the interest of scientific community in recent years. Friction stir processing (FSP) is a known process to achieve the highest level of secondary phase nanocomposites distribution in the base monolithic matrix. In this study, an attempt has been made to synthesize magnesium base AZ61A/n-TiC nanocomposites using FSP and the influence of tool rotational speed on the metallurgical, mechanical, and tribological behavior of the developed composites has been studied. Microstructural examination shows that as tool rotational speed increases, high plastic deformation occurs and heat is generated along with the concomitant shattering impact of rotation, which consequently develops larger grains in the stir zone. However, this also provides thrusts resulting in uniform distribution of the nanoparticles in the base matrix. Microhardness and ultimate tensile strength of the developed nanocomposite were found to be significantly improved when contrasted with the base metal. Lower wear rate was observed for the composite developed at 800 rpm along with the abrasive type of wear mechanism.


Author(s):  
Quinton Porter ◽  
Zhijian Pei ◽  
Chao Ma

Abstract The ability to produce a dense part of Al-based metal matrix nanocomposites using binder jetting followed by infiltration was investigated. A green density above 1.58 g/cm3 was determined to be necessary for spontaneous direct liquid infiltration to commence, and a press-compaction-assisted binder jetting process is needed to achieve this benchmark. A green density of 1.64±0.02 g/cm3 only resulted in a density of 1.65±0.03 g/cm3 by sintering at 1050 °C, which showed that densification is not possible with sintering alone. However, infiltration with Al-6061 produced specimens with a density of 2.74±0.04 g/cm3, which corresponded to a density improvement of 65%. Moreover, the infiltrated specimens had a low open porosity of 2.71±0.95% and a high hardness of 54 HRA. This study suggests that it is feasible to manufacture parts with complex shapes and superior mechanical properties using binder Jetting followed by infiltration.


Sign in / Sign up

Export Citation Format

Share Document