A Diastereomeric Pair of Sulfoxide-containing Chiral MOP-type Ligands: Preparation and Application to Rhodium-catalyzed Asymmetric 1,4-Addition Reactions

2018 ◽  
Vol 47 (6) ◽  
pp. 800-802
Author(s):  
Takashi Hoshi ◽  
Masataka Fujita ◽  
Shouta Matsushima ◽  
Hisahiro Hagiwara ◽  
Toshio Suzuki
2007 ◽  
Vol 4 (4) ◽  
pp. 281-284 ◽  
Author(s):  
Yanyan Chai ◽  
Dewen Dong ◽  
Yan Ouyang ◽  
Yongjiu Liang ◽  
Yan Wang ◽  
...  

1980 ◽  
Vol 45 (2) ◽  
pp. 406-414 ◽  
Author(s):  
Jiří Svoboda ◽  
Oldřich Paleta ◽  
Václav Dědek

Dimerisation of trifluoropropenenitrile (I) in the presence of potassium fluoride and tertiary amines afforded a mixture of stereoisomeric perfluoro-4-methyl-pentenedinitriles (II), higher-boiling compounds, and 2,3,3,3-tetrafluoropropanenitrile (III) which arises by proton transfer from the solvent molecule. Under optimum conditions, product II was obtained in about 50% yield. Reaction of the nitrile I with methyl trifluoropropenoate (IV) gave, besides the dimers II and V, the product of addition of the nitrile I to the propenoate, IV, i.e. methyl 4-cyanoperfluoro-2-pentenoate (VI), and the addition product of the propenoate IV to the nitrile I, i.e. methyl 4-cyanoperfluoro-2-methyl-3-butenoate (VII). The relative reactivity if I and IV is discussed. The ratio of stereoisomers in II, V, VI and VII indicates that the magnitude of the steric substituent effect, operating in the reaction mechanism, decreases in the order -CFCF3.(COOCH3) > -CFCF3(CN) > -COOCH3 > -CN.


1992 ◽  
Vol 57 (6) ◽  
pp. 1291-1298 ◽  
Author(s):  
František Adámek ◽  
Milan Hájek ◽  
Zbyněk Janoušek

Relative reactivity of CH3CCl3 and CF3CCl3 measured in competitive addition reactions with 1-hexene in the presence of free radical initiators or Cu, Pd and Ru complexes was found to depend on the type of catalyst. The unusual course of the reaction has been found in the additions catalyzed with copper(I)-amine complexes where CH3CCl3 in competition with CF3CCl3 was completely unreactive. The results have been explained in terms of the change of reaction mechanism and compared with classical free radical initiation.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1159
Author(s):  
Eskedar Tessema ◽  
Vijayanath Elakkat ◽  
Chiao-Fan Chiu ◽  
Jing-Hung Zheng ◽  
Ka Long Chan ◽  
...  

Phospha-Michael addition, which is the addition reaction of a phosphorus-based nucleophile to an acceptor-substituted unsaturated bond, certainly represents one of the most versatile and powerful tools for the formation of P-C bonds, since many different electrophiles and P nucleophiles can be combined with each other. This offers the possibility to access many diversely functionalized products. In this work, two kinds of basic pyridine-based organo-catalysts were used to efficiently catalyze phospha-Michael addition reactions, the 4-N,N-dimethylaminopyridinium saccharinate (DMAP·Hsac) salt and a fluorous long-chained pyridine (4-Rf-CH2OCH2-py, where Rf = C11F23). These catalysts have been synthesized and characterized by Lu’s group. The phospha-Michael addition of diisopropyl, dimethyl or triethyl phosphites to α, β-unsaturated malonates in the presence of those catalysts showed very good reactivity with high yield at 80–100 °C in 1–4.5 h with high catalytic recovery and reusability. With regard to significant catalytic recovery, sometimes more than eight cycles were observed for DMAP·Hsac adduct by using non-polar solvents (e.g., ether) to precipitate out the catalyst. In the case of the fluorous long-chained pyridine, the thermomorphic method was used to efficiently recover the catalyst for eight cycles in all the reactions. Thus, the easy separation of the catalysts from the products revealed the outstanding efficacy of our systems. To our knowledge, these are good examples of the application of recoverable organo-catalysts to the DMAP·Hsac adduct by using non-polar solvent and a fluorous long-chained pyridine under the thermomorphic mode in phospha-Michael addition reactions.


Sign in / Sign up

Export Citation Format

Share Document