Association between Body Mass Index and Disability in Individuals with Unilateral Anterior Cruciate Ligament Reconstruction

2017 ◽  
Vol 49 (5S) ◽  
pp. 419
Author(s):  
Brian Pietrosimone ◽  
Christopher Kuenze ◽  
Joseph Hart ◽  
Charles Thigpen ◽  
Adam Lepley ◽  
...  
2017 ◽  
Vol 52 (11) ◽  
pp. 1010-1018 ◽  
Author(s):  
Christopher M. Kuenze ◽  
Adam R. Kelly ◽  
Hyung-Pil Jun ◽  
Moataz Eltoukhy

Context:  The effect of unilateral cryotherapy-facilitated rehabilitation exercise on involved-limb quadriceps function and limb symmetry in individuals with quadriceps dysfunction after anterior cruciate ligament reconstruction (ACLR) remains unclear. Objective:  To measure the effect of a 2-week unilateral cryotherapy-facilitated quadriceps-strengthening program on knee-extension strength and quadriceps central activation ratio (CAR) in participants with ACLR. Design:  Controlled laboratory study. Setting:  Laboratory. Patients or Other Participants:  A total of 10 volunteers with unilateral ACLR (1 man, 9 women; age = 21.0 ± 2.8 years, height = 164.6 ± 5.0 cm, mass = 64.0 ± 6.1 kg, body mass index = 23.7 ± 2.7 kg/m2) and 10 healthy volunteers serving as control participants (1 man, 9 women; age = 20.8 ± 2.5 years, height = 169.1 ± 6.2 cm, mass = 61.1 ± 6.4 kg, body mass index = 21.4 ± 2.3 kg/m2) participated. Intervention(s):  Participants with ACLR completed a 2-week unilateral cryotherapy-facilitated quadriceps-strengthening intervention. Main Outcome Measure(s):  Bilateral normalized knee-extension maximal voluntary isometric contraction (MVIC) torque (Nm/kg) and quadriceps CAR (%) were assessed preintervention and postintervention. Limb symmetry index (LSI) was calculated at preintervention and postintervention testing. Preintervention between-groups differences in unilateral quadriceps function and LSI were evaluated using independent-samples t tests. Preintervention-to-postintervention differences in quadriceps function were evaluated using paired-samples t tests. Cohen d effect sizes (95% confidence interval [CI]) were calculated for each comparison. Results:  Preintervention between-groups comparisons revealed less knee-extension MVIC torque and quadriceps CAR for the ACLR limb (MVIC: P = .01, Cohen d = −1.31 [95% CI = −2.28, −0.34]; CAR: P = .004, Cohen d = −1.48 [95% CI = −2.47, −0.49]) and uninvolved limb (MVIC: P = .03, Cohen d = −1.05 [95% CI = −1.99, −0.11]; CAR: P = .01, Cohen d = −1.27 [95% CI = −2.23, −0.31]) but not for the LSI (MVIC: P = .46, Cohen d = −0.34 [95% CI = −1.22, 0.54]; CAR: P = .60, Cohen d = 0.24 [95% CI = −0.64, 1.12]). In the ACLR group, participants had improved knee-extension MVIC torque in the involved limb (P = .04, Cohen d = 0.32 [95% CI = −0.56, 1.20]) and uninvolved limb (P = .03, Cohen d = 0.29 [95% CI = −0.59, 1.17]); however, the improvement in quadriceps CAR was limited to the involved limb (P = .02, Cohen d = 1.16 [95% CI = 0.21, 2.11]). We observed no change in the LSI with the intervention for knee-extension MVIC torque (P = .74, Cohen d = 0.09 [95% CI = −0.79, 0.97]) or quadriceps CAR (P = .61, Cohen d = 0.26 [95% CI = −0.62, 1.14]). Conclusions:  Two weeks of cryotherapy-facilitated exercise may improve involved-limb quadriceps function while preserving between-limbs symmetry in patients with a history of ACLR.


2015 ◽  
Vol 50 (6) ◽  
pp. 596-602 ◽  
Author(s):  
Christopher M. Kuenze ◽  
Nathaniel Foot ◽  
Susan A. Saliba ◽  
Joseph M. Hart

Context Individuals with a history of anterior cruciate ligament reconstruction (ACLR) are at greater risk of reinjury and developing early-onset osteoarthritis due to persistent abnormal joint loading. Real-time clinical assessment tools may help identify patients experiencing abnormal movement patterns after ACLR. Objective To compare performance on the Landing Error Scoring System (LESS) between participants with ACLR and uninjured control participants and to determine the relationship between LESS score and knee-extension strength in these participants. Design Controlled laboratory study. Setting Research laboratory. Patients or Other Participants Forty-six recreationally active participants, consisting of 22 with ACLR (12 men, 10 women; age = 22.5 ± 5.0 years, height = 172.8 ± 7.2 cm, mass = 74.2 ± 15.6 kg, body mass index = 24.6 ± 4.0) and 24 healthy control participants (12 men, 12 women; age = 21.7 ± 3.6 years, height = 168.0 ± 8.8 cm, mass = 69.2 ± 13.6 kg, body mass index = 24.3 ± 3.2) were enrolled. Main Outcome Measure(s) Bilateral normalized knee-extension maximal voluntary isometric contraction (MVIC) torque (Nm/kg) and LESS scores were measured during a single testing session. We compared LESS scores between groups using a Mann-Whitney U test and the relationships between LESS scores and normalized knee-extension MVIC torque using Spearman ρ bivariate correlations. Results The ACLR participants had a greater number of LESS errors (6.0 ± 3.6) than healthy control participants (2.8 ± 2.2; t44 = −3.73, P = .002). In ACLR participants, lower normalized knee-extension MVIC torque in the injured limb (ρ = −0.455, P = .03) was associated with a greater number of landing errors. Conclusions Participants with ACLR displayed more errors while landing. The occurrence of landing errors was negatively correlated with knee-extension strength, suggesting that weaker participants had more landing errors. Persistent quadriceps weakness commonly associated with ACLR may be related to a reduced quality of lower extremity movement during dynamic tasks.


Sign in / Sign up

Export Citation Format

Share Document