Functional inhibition of the human middle temporal cortex affects non-visual motion perception: a repetitive transcranial magnetic stimulation study during tactile speed discrimination

2011 ◽  
Vol 236 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Emiliano Ricciardi ◽  
Demis Basso ◽  
Lorenzo Sani ◽  
Daniela Bonino ◽  
Tomaso Vecchi ◽  
...  
PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242941
Author(s):  
Vitória Piai ◽  
Laura Nieberlein ◽  
Gesa Hartwigsen

Word-production theories argue that during language production, a concept activates multiple lexical candidates in left temporal cortex, and the intended word is selected from this set. Evidence for theories on spoken-word production comes, for example, from the picture-word interference task, where participants name pictures superimposed by congruent (e.g., picture: rabbit, distractor “rabbit”), categorically related (e.g., distractor “sheep”), or unrelated (e.g., distractor “fork”) words. Typically, whereas congruent distractors facilitate naming, related distractors slow down picture naming relative to unrelated distractors, resulting in semantic interference. However, the neural correlates of semantic interference are debated. Previous neuroimaging studies have shown that the left mid-to-posterior STG (pSTG) is involved in the interference associated with semantically related distractors. To probe the functional relevance of this area, we targeted the left pSTG with focal repetitive transcranial magnetic stimulation (rTMS) while subjects performed a picture-word interference task. Unexpectedly, pSTG stimulation did not affect the semantic interference effect but selectively increased the congruency effect (i.e., faster naming with congruent distractors). The facilitatory TMS effect selectively occurred in the more difficult list with an overall lower name agreement. Our study adds new evidence to the causal role of the left pSTG in the interaction between picture and distractor representations or processing streams, only partly supporting previous neuroimaging studies. Moreover, the observed unexpected condition-specific facilitatory rTMS effect argues for an interaction of the task- or stimulus-induced brain state with the modulatory TMS effect. These issues should be systematically addressed in future rTMS studies on language production.


2004 ◽  
Vol 16 (5) ◽  
pp. 848-855 ◽  
Author(s):  
Massimiliano Oliveri ◽  
Leonor Romero ◽  
Costanza Papagno

It has been suggested that figurative language, which includes idioms, is controlled by the right hemisphere. We tested the right hemisphere hypothesis by using repetitive transcranial magnetic stimulation (rTMS) to transiently disrupt the function of the frontal and temporal areas of the right versus left hemisphere in a group of normal participants involved in a task of opaque idiom versus literal sentence comprehension. Forty opaque, nonambiguous idioms were selected. Fifteen young healthy participants underwent rTMS in two sessions. The experiment was run in five blocks, corresponding to the four stimulated scalp positions (left frontal and temporal and right frontal and temporal) and a baseline. Each block consisted of 16 trials—8 trials with idioms and 8 trials with literal sentences. In each trial, the subject was presented with a written sentence, which appeared on the screen for 2000 msec, followed by a pair of pictures for 2500 msec, one of which corresponded to the sentence. The alternative corresponded to the literal meaning for idioms and to a sentence differing in a detail in the case of literal sentences. The subject had to press a button corresponding to the picture matching the string. Reaction times increased following left temporal rTMS, whereas they were unaffected by right hemisphere rTMS, with no difference between idiomatic and literal sentences. Left temporal rTMS also reduced accuracy without differences between the two types of sentences. These data suggest that opaque idiom and literal sentence comprehension depends on the left temporal cortex.


2007 ◽  
Vol 429 (2-3) ◽  
pp. 131-135 ◽  
Author(s):  
Daisuke Matsuyoshi ◽  
Nobuyuki Hirose ◽  
Tatsuya Mima ◽  
Hidenao Fukuyama ◽  
Naoyuki Osaka

Perception ◽  
2020 ◽  
Vol 49 (8) ◽  
pp. 882-892
Author(s):  
Luca Battaglini

Observers report seeing as slower a target disk moving in front of a static visual noise (SVN) background than the same object moving in front of a random dynamic visual noise (rDVN) background when the speed is the same. To investigate in which brain region (lower vs. higher visual areas) the background and the target signals might be combined to elicit this misperception, the transcranial magnetic stimulation (TMS) was delivered over the early visual cortex (V1/V2), middle temporal area (MT) and Cz (control site) while participants performed a speed discrimination task with targets moving in front of an SVN or an rDVN. Results showed that the TMS over MT reduced the perceived speed of the target moving in front of an SVN, but not when the target was moving in front of an rDVN background. Moreover, the TMS do not seem to interfere with encoding processing but more likely affected decoding processing in conditions of high uncertainty (i.e., when targets have similar speed).


Sign in / Sign up

Export Citation Format

Share Document