Application of the Pseudo-Excitation Method with Spatial Coherence in Random Vibration Analysis of Long-Span Space Structures

2007 ◽  
Vol 10 (2) ◽  
pp. 135-151 ◽  
Author(s):  
Jian-Mei Sun ◽  
Ji-Hong Ye ◽  
Wen-Rang Cheng ◽  
Qi-Lin Zhang
2016 ◽  
Vol 33 (2) ◽  
Author(s):  
Pan Xiang ◽  
Yan Zhao ◽  
Jiahao Lin ◽  
D Kennedy ◽  
Fred W Williams

Purpose The purpose of this paper is to present a new random vibration-based assessment method for coupled vehicle-track systems with uncertain parameters when subjected to random track irregularity. Design/methodology/approach The uncertain parameters of vehicle are described as bounded random variables. The track is regarded as an infinite periodic structure, and the dynamic equations of the coupled vehicle-track system, under mixed physical coordinates and symplectic dual coordinates, are established through wheel-rail coupling relationships. The random track irregularities at the wheel-rail contact points are converted to a series of deterministic harmonic excitations with phase lag by using the pseudo excitation method. Based on the polynomial chaos expansion of the pseudo response, a chaos expanded pseudo equation is derived, leading to the combined hybrid pseudo excitation method - polynomial chaos expansion method Findings The impact of uncertainty propagation on the random vibration analysis is assessed efficiently. According to GB5599-85, the reliability analysis for the stability index is implemented, which can grade the comfort level by the probability. Comparing to the deterministic analysis, it turns out that neglect of the parameter uncertainty will lead to potentially risky analysis results. Originality/value The proposed method is compared with Monte Carlo simulations, achieving good agreement. It is an effective means for random vibration analysis of uncertain coupled vehicle-track systems and has good engineering practicality


Author(s):  
Yuefang Wang ◽  
Yan Liu ◽  
Xuejun Wang ◽  
Hongkun Li ◽  
Daren Jiang

Dynamic response of impeller of centrifugal compressor is studied considering pulsating pressure field on blades due to unsteady flow conditions. The aerodynamic forces on the blades are modeled as random load whose spectral characteristics are determined through computational fluid dynamic simulations in the time domain. The dynamical response in the unsteady case is solved as a random vibration problem in the frequency domain which provides useful power spectral density displacement and stress for early stage of impeller design. A semi-open impeller mounted with 19 blades is modeled using three dimensional solid finite elements. The random vibration problem of the impeller is solved through the Pseudo-Excitation Method considering spatial variance of the pressure field. A user-defined module is developed based on harmonic analysis to generate the auto power spectral density and variance of displacement and stress at 200 nodes. It is demonstrated that solving a random vibration problem through the Pseudo-Excitation Method is faster than the commonly adopted multiple-step transient analysis. It is concluded that evaluating the structural integrity of impeller solids in the regime of random vibration is a feasible and efficient approach at the early design stage of compressors.


2015 ◽  
Vol 12 (04) ◽  
pp. 1540002 ◽  
Author(s):  
Yuefang Wang ◽  
Sujing Wang ◽  
Lihua Huang

Impellers of centrifugal compressors are generally loaded by fluctuating aerodynamic pressure in operations. Excessive vibration of the impellers can be induced by unsteady airflows and lead to severe fatigue failures. Traditional transient stress analyses implemented in time domain generally require multiple load-step, very time-consuming computations using input of temporal pneumatic force previously obtained from Computational fluid dynamics (CFD) analyses. For quick evaluation of structural integrity of impellers, it is necessary to develop random vibration models and solution approaches defined in frequency domain. In this paper, the Pseudo-Excitation Method (PEM) is used to obtain power spectral density of three-dimensional, dynamic displacement and stress of impellers. A finite element model of an unshrouded impeller of a centrifugal compressor is generated based on the result of unsteady CFD analysis. Compared with the direct transient stress analyses in time domain, the pseudo-excitation method provides accurate and fast estimation of dynamic response of the impeller, making it an applicable and efficient method for analyzing random vibration of impellers.


Sign in / Sign up

Export Citation Format

Share Document