scholarly journals Two Pass Improved Encoding and its Parallel Processing for Fractal Image Compression

2007 ◽  
Vol 1 (3) ◽  
pp. 381-408
Author(s):  
Ghim-Hwee Ong ◽  
Kin-Wah Eugene Ching

An improvement scheme, so named the Two-Pass Improved Encoding Scheme (TIES), for the application to image compression through the extension of the existing concept of fractal image compression (FIC), which capitalizes on the self-similarity within a given image which is to be compressed, is proposed in this paper. This paper first briefly explores the existing image compression technology based on FIC, before exploring the areas which can be improved and hence establishing the concept behind the TIES algorithm. An effective encoding and decoding algorithm for the implementation of TIES is developed, through the consideration of the domain pool, block scaling and transformation, range block approximation using linear combinations and arithmetic encoding for storing data as close to source entropy as possible. The performance of TIES is then explicitly compared against that of FIC under the same conditions. Finally, due to the long encoding time required by TIES, this paper then proceeds to propose parallelized versions of the two TIES algorithms, before finally concluding with an empirical analysis of the speedup and scalability of the parallelized TIES algorithms, as well as compare the effect of parallelization between the two.

Author(s):  
YOSHITO UENO

This paper presents a fusion scheme for wavelets and fractal image compression based on the self-similarity of the space-frequency plane of sub-bands after wavelet transformation of images. Various kinds of wavelet transform are examined for the characteristics of their self-similarity and evaluated for the adoption of fractal encoder. The aim of this paper is to reduce the information of the two sets of blocks involved in the fractal image compression by using the self-similarity of images. And also, the new video encoder using the fusion method of wavelets and fractal adopts the similar manner as the motion compensation technique of MPEG encoder. Experimental results show almost the same PSNR and bits rate as conventional fractal image encoder by depending on the sampled images through computer simulations.


Sign in / Sign up

Export Citation Format

Share Document