scholarly journals Genetic characterization of genes encoding enzymes catalyzing addition of phospho-ethanolamine to the glycosylphosphatidylinositol anchor in Saccharomyces cerevisiae

2002 ◽  
Vol 77 (5) ◽  
pp. 309-322 ◽  
Author(s):  
Akio Toh-e ◽  
Tomoko Oguchi
2007 ◽  
Vol 6 (12) ◽  
pp. 2214-2221 ◽  
Author(s):  
Lois M. Douglas ◽  
Li Li ◽  
Yang Yang ◽  
A. M. Dranginis

ABSTRACT The Flo11/Muc1 flocculin has diverse phenotypic effects. Saccharomyces cerevisiae cells of strain background Σ1278b require Flo11p to form pseudohyphae, invade agar, adhere to plastic, and develop biofilms, but they do not flocculate. We show that S. cerevisiae var. diastaticus strains, on the other hand, exhibit Flo11-dependent flocculation and biofilm formation but do not invade agar or form pseudohyphae. In order to study the nature of the Flo11p proteins produced by these two types of strains, we examined secreted Flo11p, encoded by a plasmid-borne gene, in which the glycosylphosphatidylinositol anchor sequences had been replaced by a histidine tag. A protein of approximately 196 kDa was secreted from both strains, which upon purification and concentration, aggregated into a form with a very high molecular mass. When secreted Flo11p was covalently attached to microscopic beads, it conferred the ability to specifically bind to S. cerevisiae var. diastaticus cells, which flocculate, but not to Σ1278b cells, which do not flocculate. This was true for the 196-kDa form as well as the high-molecular-weight form of Flo11p, regardless of the strain source. The coated beads bound to S. cerevisiae var. diastaticus cells expressing FLO11 and failed to bind to cells with a deletion of FLO11, demonstrating a homotypic adhesive mechanism. Flo11p was shown to be a mannoprotein. Bead-to-cell adhesion was inhibited by mannose, which also inhibits Flo11-dependent flocculation in vivo, further suggesting that this in vitro system is a useful model for the study of fungal adhesion.


2020 ◽  
Vol 51 (3) ◽  
pp. 1297-1307 ◽  
Author(s):  
Jamily de Almeida Silva Vilela ◽  
Leonardo de Figueiredo Vilela ◽  
Cíntia Lacerda Ramos ◽  
Rosane Freitas Schwan

2012 ◽  
Vol 87 (2) ◽  
pp. 212-221 ◽  
Author(s):  
M. Dmitryjuk ◽  
M. Dopieralska ◽  
E. Łopieńska-Biernat ◽  
R.J. Frączek

AbstractTrehalose 6-phosphate (T6P) synthase (TPS;EC2.4.1.15) was isolated from muscles ofAscaris suumby ammonium sulphate fractionation, ion-exchange DEAE SEPHACELTManion exchanger column chromatography and Sepharose 6B gel filtration. On sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), 265-fold purified TPS exhibited a molecular weight of 66 kDa. The optimum pH and temperature of the purified enzyme were 3.8–4.2 and 35°C, respectively. The isoelectric point (pI) of TPS was pH 5.4. The studied TPS was not absolutely substrate specific. Besides glucose 6-phosphate, the enzyme was able to use fructose 6-phosphate as an acceptor of glucose. TPS was activated by 10 mMMgCl2, 10 mMCaCl2and 10 mMNaCl. In addition, it was inhibited by ethylenediaminetetra-acetic acid (EDTA), KCl, FeCl3and ZnCl2. Two genes encoding TPS were isolated and sequenced from muscles of the parasite. Complete coding sequences fortps1(JF412033.2) andtps2(JF412034.2) were 3917 bp and 3976 bp, respectively. Translation products (AEX60788.1 and AEX60787.1) showed expression to the glucosyltransferase-GTB-type superfamily.


2021 ◽  
Author(s):  
RB Gorodnichev ◽  
MA Kornienko ◽  
NS Kuptsov ◽  
MV Malakhova ◽  
DA Bespiatykh ◽  
...  

The Klebsiella pneumoniae bacterium is capable of causing the broad range of human nosocomial infections associated with antibiotic resistance and high mortality. Virulent bacteriophage therapy is one of the promising alternatives to antibiotic treatment of such infections. The study was aimed to isolate virulent bacteriophages effective against the relevant clinical K. pneumoniae strains, and to perform the molecular genetic characterization of these phages. Bacteriophages were isolated from the river water samples using the enrichment method. The whole-genome sequencing was performed on the MiSeq platform (Illumina). Three novel K. pneumoniae bacteriophages belonging to families Autographiviridae (vB_KpnP_NER40, GenBank MZ602146) and Myoviridae (vB_KpnM_VIK251, GenBank MZ602147; vB_KpnM_FRZ284, GenBank MZ602148) have been isolated and characterized. On the collection of 105 K. pneumoniae clinical strains, it has been found that bacteriophages vB_KpnP_NER40 and vB_KpnM_VIK251 have a narrow lytic spectrum (22% and 11%), which is limited to strains of the capsular types К2 and К20 respectively. In contrast, bacteriophage vB_KpnM_FRZ284 has a broad lytic spectrum (37%), causing the lysis of strains with different types of capsular polysaccharide. The phages are strictly virulent and have no genes encoding integrases, toxins or pathogenicity factors in their genomes. Genes of depolymerases, encoding the potential receptor binding proteins, have been found in the genomes of the capsular-specific bacteriophages vB_KpnP_NER40 and vB_KpnM_VIK251. The cocktail of three bacteriophages has lysed about 65% of the studied collection of K. рneumoniae strain and is potentially applicable for therapeutic purposes.


Sign in / Sign up

Export Citation Format

Share Document