Solving Shallow Water Wave Equation with HLL Scheme Based on Moving Grid

2021 ◽  
Vol 10 (10) ◽  
pp. 3317-3324
Author(s):  
霄 李
Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1439
Author(s):  
Chaudry Masood Khalique ◽  
Karabo Plaatjie

In this article, we investigate a two-dimensional generalized shallow water wave equation. Lie symmetries of the equation are computed first and then used to perform symmetry reductions. By utilizing the three translation symmetries of the equation, a fourth-order ordinary differential equation is obtained and solved in terms of an incomplete elliptic integral. Moreover, with the aid of Kudryashov’s approach, more closed-form solutions are constructed. In addition, energy and linear momentum conservation laws for the underlying equation are computed by engaging the multiplier approach as well as Noether’s theorem.


Nonlinearity ◽  
1994 ◽  
Vol 7 (3) ◽  
pp. 975-1000 ◽  
Author(s):  
P A Clarkson ◽  
E L Mansfield

2012 ◽  
Vol 2012 ◽  
pp. 1-23
Author(s):  
Ying Wang ◽  
YunXi Guo

A shallow water wave equation with a weakly dissipative term, which includes the weakly dissipative Camassa-Holm and the weakly dissipative Degasperis-Procesi equations as special cases, is investigated. The sufficient conditions about the existence of the global strong solution are given. Provided that(1-∂x2)u0∈M+(R),u0∈H1(R),andu0∈L1(R), the existence and uniqueness of the global weak solution to the equation are shown to be true.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Jian-Ping Yu ◽  
Wen-Xiu Ma ◽  
Bo Ren ◽  
Yong-Li Sun ◽  
Chaudry Masood Khalique

In this paper, we study the diversity of interaction solutions of a shallow water wave equation, the generalized Hirota–Satsuma–Ito (gHSI) equation. Using the Hirota direct method, we establish a general theory for the diversity of interaction solutions, which can be applied to generate many important solutions, such as lumps and lump-soliton solutions. This is an interesting feature of this research. In addition, we prove this new model is integrable in Painlevé sense. Finally, the diversity of interactive wave solutions of the gHSI is graphically displayed by selecting specific parameters. All the obtained results can be applied to the research of fluid dynamics.


Sign in / Sign up

Export Citation Format

Share Document