symmetry approach
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 59)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Vol 375 ◽  
pp. 115835
Author(s):  
Davis Zavickis ◽  
Guntars Zvejnieks ◽  
Andrei Chesnokov ◽  
Denis Gryaznov

2022 ◽  
Vol 128 (2) ◽  
Author(s):  
Martin Oberlack ◽  
Sergio Hoyas ◽  
Stefanie V. Kraheberger ◽  
Francisco Alcántara-Ávila ◽  
Jonathan Laux

Author(s):  
Roshni Bhaumik ◽  
Sourav Dutta ◽  
Subenoy Chakraborty

In the framework of [Formula: see text]-gravity theory, classical and quantum cosmology has been studied in this work for Friedmann Lemaitre Robertson Walker Metric (FLRW) space-time model. The Noether symmetry, a point-like symmetry of the Lagrangian, is used to the physical system and a specific functional form of [Formula: see text] is determined. A point transformation in the 2D augmented space restricts one of the variables to be cyclic so that the Lagrangian as well as the field equations are simplified so that they are solvable. Lastly, for quantum cosmology, the WD equation is constructed and a possible solution has been evaluated.


Author(s):  
Santu Mondal ◽  
Roshni Bhaumik ◽  
Sourav Dutta ◽  
Subenoy Chakraborty

In this work, a cosmological model is considered having two scalar fields minimally coupled to gravity with a mixed kinetic term. The model is characterized by the coupling function and the potential function which are assumed to depend on one of the scalar fields. Instead of choosing these functions phenomenologically here, they are evaluated assuming the existence of Noether symmetry. By appropriate choice of a point transformation in the augmented space, one of the variables in the Lagrangian becomes cyclic and the evolution equations become much simpler to have solutions. Finally, the solutions are analyzed from cosmological view point.


Author(s):  
Sheng-Nan Guan ◽  
Guang-Mei Wei ◽  
Qi Li

In this paper, a generalized (2+1)-dimensional Hirota–Satsuma–Ito (GHSI) equation is investigated using Lie symmetry approach. Infinitesimal generators and symmetry groups of this equation are presented, and the optimal system is given with adjoint representation. Based on the optimal system, some symmetry reductions are performed and some similarity solutions are provided, including soliton solutions and periodic solutions. With Lagrangian, it is shown that the GHSI equation is nonlinearly self-adjoint. By means of the Lie point symmetries and nonlinear self-adjointness, the conservation laws are constructed. Furthermore, some physically meaningful solutions are illustrated graphically with suitable choices of parameters.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012058
Author(s):  
Yerlan Myrzakulov ◽  
Sabit Bekov ◽  
Kairat Myrzakulov

Abstract In this work, we consider a homogeneous and isotropic cosmological model of the universe in f (T, B) gravity with non-minimally coupled fermionic field. In order to find the form of the coupling function F(Ψ), the potential function V (Ψ) of the fermionic field and the function f (T, B), we found through the Noether symmetry approach. The results obtain are coincide with the observational data that describe the late-time accelerated expansion of the universe.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1452
Author(s):  
Lev Ivankiv ◽  
Yarema Prykarpatsky ◽  
Valeriy Samoilenko ◽  
Anatolij Prykarpatski

We review a non-relativistic current algebra symmetry approach to constructing the Bogolubov generating functional of many-particle distribution functions and apply it to description of invariantly reduced Hamiltonian systems of the Boltzmann type kinetic equations, related to naturally imposed constraints on many-particle correlation functions. As an interesting example of deriving Vlasov type kinetic equations, we considered a quantum-mechanical model of spinless particles with delta-type interaction, having applications for describing so called Benney-type hydrodynamical praticle flows. We also review new results on a special class of dynamical systems of Boltzmann–Bogolubov and Boltzmann–Vlasov type on infinite dimensional functional manifolds modeling kinetic processes in many-particle media. Based on algebraic properties of the canonical quantum symmetry current algebra and its functional representations, we succeeded in dual analysis of the infinite Bogolubov hierarchy of many-particle distribution functions and their Hamiltonian structure. Moreover, we proposed a new approach to invariant reduction of the Bogolubov hierarchy on a suitably chosen correlation function constraint and deduction of the related modified Boltzmann–Bogolubov kinetic equations on a finite set of multi-particle distribution functions. There are also presented results of application of devised methods to describing kinetic properties of a many-particle system with an adsorbent surface, in particular, the corresponding kinetic equation for the occupation density distribution function is derived.


Sign in / Sign up

Export Citation Format

Share Document