Mixed Research on Ratchet Dividend Strategy and Barrier Strategy under Positive Lévy Process

2021 ◽  
Vol 10 (11) ◽  
pp. 3687-3692
Author(s):  
海晓 刘
2015 ◽  
Vol 52 (03) ◽  
pp. 665-687
Author(s):  
Esther Frostig

Consider a spectrally negative risk process where, on ruin, the deficit is immediately paid, and the process restarts from 0. When the process reaches a threshold b, all the surplus above b is paid as dividend. Applying the theory of exit times for a spectrally negative Lévy process and its reflection at the maximum and at the minimum, we obtain recursive formulae for the following moments. (i) The moments of the discounted loss until the process reaches b. This is equivalent to the moments of the discounted dividends in the dual model under the barrier strategy. (ii) The moments of the discounted loss for models with and without a dividend barrier for the infinite horizon. (iii) The moments of the discounted dividends for the infinite horizon.


2015 ◽  
Vol 52 (3) ◽  
pp. 665-687
Author(s):  
Esther Frostig

Consider a spectrally negative risk process where, on ruin, the deficit is immediately paid, and the process restarts from 0. When the process reaches a threshold b, all the surplus above b is paid as dividend. Applying the theory of exit times for a spectrally negative Lévy process and its reflection at the maximum and at the minimum, we obtain recursive formulae for the following moments. (i) The moments of the discounted loss until the process reaches b. This is equivalent to the moments of the discounted dividends in the dual model under the barrier strategy. (ii) The moments of the discounted loss for models with and without a dividend barrier for the infinite horizon. (iii) The moments of the discounted dividends for the infinite horizon.


2018 ◽  
Vol 12 (2) ◽  
pp. 326-337
Author(s):  
Huanqun Jiang

AbstractIn this paper, we extend the optimality of the barrier strategy for the dividend payment problem to the setting that the underlying surplus process is a spectrally negative Lévy process and the discounting factor is an exponential Lévy process. The proof of the main result uses the fluctuation identities of spectrally negative Lévy processes. This extends recent results of Eisenberg for the case where the accumulated interest rate and surplus process are independent Brownian motions with drift.


2014 ◽  
Vol 352 (10) ◽  
pp. 859-864 ◽  
Author(s):  
Arturo Kohatsu-Higa ◽  
Eulalia Nualart ◽  
Ngoc Khue Tran
Keyword(s):  

2007 ◽  
Vol 17 (1) ◽  
pp. 156-180 ◽  
Author(s):  
Florin Avram ◽  
Zbigniew Palmowski ◽  
Martijn R. Pistorius

2014 ◽  
Vol 46 (3) ◽  
pp. 846-877 ◽  
Author(s):  
Vicky Fasen

We consider a multivariate continuous-time ARMA (MCARMA) process sampled at a high-frequency time grid {hn, 2hn,…, nhn}, where hn ↓ 0 and nhn → ∞ as n → ∞, or at a constant time grid where hn = h. For this model, we present the asymptotic behavior of the properly normalized partial sum to a multivariate stable or a multivariate normal random vector depending on the domain of attraction of the driving Lévy process. Furthermore, we derive the asymptotic behavior of the sample variance. In the case of finite second moments of the driving Lévy process the sample variance is a consistent estimator. Moreover, we embed the MCARMA process in a cointegrated model. For this model, we propose a parameter estimator and derive its asymptotic behavior. The results are given for more general processes than MCARMA processes and contain some asymptotic properties of stochastic integrals.


2009 ◽  
Vol 46 (02) ◽  
pp. 542-558 ◽  
Author(s):  
E. J. Baurdoux

Chiu and Yin (2005) found the Laplace transform of the last time a spectrally negative Lévy process, which drifts to ∞, is below some level. The main motivation for the study of this random time stems from risk theory: what is the last time the risk process, modeled by a spectrally negative Lévy process drifting to ∞, is 0? In this paper we extend the result of Chiu and Yin, and we derive the Laplace transform of the last time, before an independent, exponentially distributed time, that a spectrally negative Lévy process (without any further conditions) exceeds (upwards or downwards) or hits a certain level. As an application, we extend a result found in Doney (1991).


2018 ◽  
Vol 34 (4) ◽  
pp. 397-408 ◽  
Author(s):  
Søren Asmussen ◽  
Jevgenijs Ivanovs

Sign in / Sign up

Export Citation Format

Share Document