Some Infinite Series Involving the Riemann Zeta Function

2019 ◽  
Vol 09 (08) ◽  
pp. 969-979
Author(s):  
玮 马
2021 ◽  
Vol 55 (2) ◽  
pp. 115-123
Author(s):  
R. Frontczak ◽  
T. Goy

The purpose of this paper is to present closed forms for various types of infinite seriesinvolving Fibonacci (Lucas) numbers and the Riemann zeta function at integer arguments.To prove our results, we will apply some conventional arguments and combine the Binet formulasfor these sequences with generating functions involving the Riemann zeta function and some known series evaluations.Among the results derived in this paper, we will establish that $\displaystyle\sum_{k=1}^\infty (\zeta(2k+1)-1) F_{2k} = \frac{1}{2},\quad\sum_{k=1}^\infty (\zeta(2k+1)-1) \frac{L_{2k+1}}{2k+1} = 1-\gamma,$ where $\gamma$ is the familiar Euler-Mascheroni constant.


Author(s):  
Alexander E. Patkowski

Abstract We prove a new generalization of Davenport's Fourier expansion of the infinite series involving the fractional part function over arithmetic functions. A new Mellin transform related to the Riemann zeta function is also established.


2017 ◽  
Vol 11 (2) ◽  
pp. 386-398 ◽  
Author(s):  
Horst Alzer ◽  
Junesang Choi

We present one-parameter series representations for the following series involving the Riemann zeta function ??n=3 n odd ?(n)/n sn and ??n=2 n even ?(n) n sn and we apply our results to obtain new representations for some mathematical constants such as the Euler (or Euler-Mascheroni) constant, the Catalan constant, log 2, ?(3) and ?.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
WonTae Hwang ◽  
Kyunghwan Song

Abstract We prove that the integer part of the reciprocal of the tail of $\zeta (s)$ ζ ( s ) at a rational number $s=\frac{1}{p}$ s = 1 p for any integer with $p \geq 5$ p ≥ 5 or $s=\frac{2}{p}$ s = 2 p for any odd integer with $p \geq 5$ p ≥ 5 can be described essentially as the integer part of an explicit quantity corresponding to it. To deal with the case when $s=\frac{2}{p}$ s = 2 p , we use a result on the finiteness of integral points of certain curves over $\mathbb{Q}$ Q .


1994 ◽  
Vol 37 (2) ◽  
pp. 278-286 ◽  
Author(s):  
C. Yalçin Yildirim

AbstractA relation between the zeros of the partial sums and the zeros of the corresponding tails of the Maclaurin series for ez is established. This allows an asymptotic estimation of a quantity which came up in the theory of the Riemann zeta-function. Some new properties of the tails of ez are also provided.


Sign in / Sign up

Export Citation Format

Share Document