scholarly journals General infinite series evaluations involving Fibonacci numbers and the Riemann zeta function

2021 ◽  
Vol 55 (2) ◽  
pp. 115-123
Author(s):  
R. Frontczak ◽  
T. Goy

The purpose of this paper is to present closed forms for various types of infinite seriesinvolving Fibonacci (Lucas) numbers and the Riemann zeta function at integer arguments.To prove our results, we will apply some conventional arguments and combine the Binet formulasfor these sequences with generating functions involving the Riemann zeta function and some known series evaluations.Among the results derived in this paper, we will establish that $\displaystyle\sum_{k=1}^\infty (\zeta(2k+1)-1) F_{2k} = \frac{1}{2},\quad\sum_{k=1}^\infty (\zeta(2k+1)-1) \frac{L_{2k+1}}{2k+1} = 1-\gamma,$ where $\gamma$ is the familiar Euler-Mascheroni constant.

2017 ◽  
Vol 13 (03) ◽  
pp. 705-716 ◽  
Author(s):  
Michael E. Hoffman

For [Formula: see text], let [Formula: see text] be the sum of all multiple zeta values with even arguments whose weight is [Formula: see text] and whose depth is [Formula: see text]. Of course [Formula: see text] is the value [Formula: see text] of the Riemann zeta function at [Formula: see text], and it is well known that [Formula: see text]. Recently Shen and Cai gave formulas for [Formula: see text] and [Formula: see text] in terms of [Formula: see text] and [Formula: see text]. We give two formulas for [Formula: see text], both valid for arbitrary [Formula: see text], one of which generalizes the Shen–Cai results; by comparing the two we obtain a Bernoulli-number identity. We also give explicit generating functions for the numbers [Formula: see text] and for the analogous numbers [Formula: see text] defined using multiple zeta-star values of even arguments.


10.37236/759 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Kh. Hessami Pilehrood ◽  
T. Hessami Pilehrood

Using WZ-pairs we present simpler proofs of Koecher, Leshchiner and Bailey-Borwein-Bradley's identities for generating functions of the sequences $\{\zeta(2n+2)\}_{n\ge 0}$ and $\{\zeta(2n+3)\}_{n\ge 0}.$ By the same method, we give several new representations for these generating functions yielding faster convergent series for values of the Riemann zeta function.


Author(s):  
Alexander E. Patkowski

Abstract We prove a new generalization of Davenport's Fourier expansion of the infinite series involving the fractional part function over arithmetic functions. A new Mellin transform related to the Riemann zeta function is also established.


2017 ◽  
Vol 11 (2) ◽  
pp. 386-398 ◽  
Author(s):  
Horst Alzer ◽  
Junesang Choi

We present one-parameter series representations for the following series involving the Riemann zeta function ??n=3 n odd ?(n)/n sn and ??n=2 n even ?(n) n sn and we apply our results to obtain new representations for some mathematical constants such as the Euler (or Euler-Mascheroni) constant, the Catalan constant, log 2, ?(3) and ?.


Sign in / Sign up

Export Citation Format

Share Document