scholarly journals Reduced-dose computed tomography to detect dorsal screw protrusion after distal radius volar plating

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1428
Author(s):  
Kevin J. Leffers ◽  
John W. Kosty ◽  
Glenn M. Garcia ◽  
Daniel C Jupiter ◽  
Ronald W. Lindsey ◽  
...  

Background: Tenosynovitis and tendon rupture caused by screw penetration of the dorsal cortex are common complications after fixed-angle volar plating of a distal radius fracture. Detecting screw prominence with plain radiography is difficult due to the topography of the distal radius dorsal cortex. Computed tomography (CT) offers more detailed imaging of the bone topography, but is associated with radiation exposure. The present cadaveric study compared reduced-dose and standard-dose CT protocols in the detection of dorsal screw protrusion after fixed-angle volar plating of distal radius fracture. If found equivalent, a reduced-dose protocol could decrease the total radiation exposure to patients. Methods: Standard size distal radius volar locking plates were placed using a standard Henry approach in 3 matched pairs of cadaver wrists. A total of 3 distal locking screws were placed at 3 different lengths for a total of 3 rounds of CT scans per wrist pair. Each wrist pair was imaged by CT using standard-dose and reduced-dose protocols. Dorsal screw penetration was measured in each imaging protocol by 3 radiologists at two time periods to calculate inter- and intra-observer variability. Variability was calculated using the concordance correlation coefficient (CCC), intra-class correlation coefficient (ICC), and Pearson correlation coefficient (PCC). Bland-Altman plots were used and assessed 95% limits of agreement. Results: Intra- and inter-observer variabilities, either with the reduced-dose or standard-dose protocol, were >0.85. Pairwise CCC, ICC, and PCC were >0.91. In the comparison of reduced dose versus standard dose between radiologists, correlations were always >0.95. Conclusions: Comparison of a reduced-dose CT protocol and a standard-dose CT protocol for the detection of dorsal penetrating screws after fixed-angle volar plating showed >0.95 correlation in this cadaveric model. A reduced-dose CT protocol is equivalent to a standard dose CT protocol for orthopedic imaging and should reduce radiation exposure.

2016 ◽  
Vol 98 (2) ◽  
pp. 138-142 ◽  
Author(s):  
D Williams ◽  
J Singh ◽  
N Heidari ◽  
M Ahmad ◽  
A Noorani ◽  
...  

Introduction Volar locking plates are used to treat unstable and displaced fractures of the distal radius. Potential advantages of stable anatomical reduction (eg early mobilisation) can be limited by penetration of dorsal screws, leading to synovitis and potential rupture of extensor tendons. Despite intraoperative imaging, penetration of dorsal screws continues to be a problem in volar plating of the distal radius. Ultrasound is a well recognised, readily available, diagnostic tool used to assess soft-tissue impingement by orthopaedic hardware. In this cadaveric study, we wished to ascertain the sensitivity and specificity of ultrasound for identification of protrusion of dorsal screws after volar plating of the distal radius. Methods Four adult, unpaired phenol-embalmed cadaveric distal radii were used. A VariAx™ Distal Radius Volar Locking Plate system (Stryker, Kalamazoo, MI, USA) was employed for instrumented fixation. A portable SIUI CTS 900 ultrasound machine (Providian Medical, Eastlake, OH, USA) was used to image the dorsal cortex to ascertain screw penetration. Results Specificity and sensitivity of ultrasound for detection of screw protrusion through the dorsal cortex was 100%. Conclusions Ultrasound was found to be a safe and accurate method for assessment of dorsal-screw penetration through the dorsal cortex of the radius after volar plating of the distal radius. It also aids diagnosis of associated tendon disorders (eg tenosynovitis) that might cause pain and limit wrist function.


2012 ◽  
Vol 37 (5) ◽  
pp. 963-967 ◽  
Author(s):  
Kagan Ozer ◽  
Jennifer M. Wolf ◽  
Bruce Watkins ◽  
David J. Hak

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Juan M. Giugale ◽  
Mitchell S. Fourman ◽  
Deidre L. Bielicka ◽  
John R. Fowler

Background. The dorsal tangential (DT) view has been shown to improve the detection of dorsal screw perforation during volar distal radius fracture fixation. Here we performed a cadaveric imaging survey study to evaluate if the DT view was uniformly beneficial for all screws. Methods. Standardized placement of fixed-angle volar distal radius plates was performed on two cadavers. Fluoroscopic images depicting variable screw perforation of each of the four screw holes on the plate were generated. A 46-image survey was distributed at a large academic medical center. Respondents were asked to answer if the screw was perforating through the dorsal cortex in each image. Statistical analysis was performed using Fisher’s exact test. A p value < .05 was considered significant. Results. The DT view offered a significantly more reliable determination of dorsal screw penetration than traditional lateral imaging for the radial-most screw at all degrees of perforation and the middle two screws at 2 mm of perforation. Residents and attendings had more accurate screw readings overall using the DT view. Conclusions. The DT view is superior to traditional lateral imaging in the detection of small amounts of dorsal perforation of the radial-most three screws of a fixed-angle volar plate.


2017 ◽  
Vol 06 (04) ◽  
pp. 340-348 ◽  
Author(s):  
Soo Cha ◽  
Hyun Shin

Background We evaluated the detection for screw penetration on the dorsal cortex of the radius in serial oblique, dorsal tangential, and radial groove radiographic views in volar plating fixation. Materials and Methods Eight screw positions were set in each of the four cadaveric radii. Screw 1 was placed in the styloid subregion, whereas screws 2 and 3 were placed just proximal to the styloid and were defined for the radial region of the radius. Screws 4 (distal to the extensor pollicis longus [EPL] groove), 5 (the distal half of the groove), and 6 (the proximal half of the groove) were placed in the central region of the radius. Screws 7 (just medial to the groove) and 8 (sigmoid notch subregion) were positioned in the ulnar region of the radius. The screws were overlengthened by 1 and 2 mm and were evaluated in three radiographic views. Results Penetrations in the radial region were fully visible in supinated oblique views with 1- and 2-mm overlengthened screws. The penetration of screw 4 was clearly observable over a considerable range of views. However, the 1-mm penetration of screw 5 was not detectable at any angle of projection. Detection of the ulnar region screw was the most difficult among the three regions with oblique views. In the dorsal tangential view, the 1-mm penetration of screw 4 was not observed in any of the four radii, but the penetration of screw 5 was detectable in all the radii. The screws 2, 3, 5, 7, and 8 were readily detectable. The screw 4 was barely seen in the radial groove view, while the screws 5 and 6 were readily detectable. Conclusion/Clinical Relevance Appropriate combinations of these well-known radiological views are essential for the overall detection of penetrated screws during plating in distal radius fractures.


2020 ◽  
Vol 102-B (7) ◽  
pp. 874-880
Author(s):  
David W. G. Langerhuizen ◽  
Minke Bergsma ◽  
Caroline A. Selles ◽  
Ruurd L. Jaarsma ◽  
J. Carel Goslings ◽  
...  

Aims The aim of this study was to investigate whether intraoperative 3D fluoroscopic imaging outperforms dorsal tangential views in the detection of dorsal cortex screw penetration after volar plating of an intra-articular distal radial fracture, as identified on postoperative CT imaging. Methods A total of 165 prospectively enrolled patients who underwent volar plating for an intra-articular distal radial fracture were retrospectively evaluated to study three intraoperative imaging protocols: 1) standard 2D fluoroscopic imaging with anteroposterior (AP) and elevated lateral images (n = 55); 2) 2D fluoroscopic imaging with AP, lateral, and dorsal tangential views images (n = 50); and 3) 3D fluoroscopy (n = 60). Multiplanar reconstructions of postoperative CT scans served as the reference standard. Results In order to detect dorsal screw penetration, the sensitivity of dorsal tangential views was 39% with a negative predictive value (NPV) of 91% and an accuracy of 91%; compared with a sensitivity of 25% for 3D fluoroscopy with a NPV of 93% and an accuracy of 93%. On the postoperative CT scans, we found penetrating screws in: 1) 40% of patients in the 2D fluoroscopy group; 2) in 32% of those in the 2D fluoroscopy group with AP, lateral, and dorsal tangential views; and 3) in 25% of patients in the 3D fluoroscopy group. In all three groups, the second compartment was prone to penetration, while the postoperative incidence decreased when more advanced imaging was used. There were no penetrating screws in the third compartment (extensor pollicis longus groove) in the 3D fluoroscopy groups, and one in the dorsal tangential views group. Conclusion Advanced intraoperative imaging helps to identify screws which have penetrated the dorsal compartments of the wrist. However, based on diagnostic performance characteristics, one cannot conclude that 3D fluoroscopy outperforms dorsal tangential views when used for this purpose. Dorsal tangential views are sufficiently accurate to detect dorsal screw penetration, and arguably more efficacious than 3D fluoroscopy. Cite this article: Bone Joint J 2020;102-B(7):874–880.


2019 ◽  
Vol 08 (06) ◽  
pp. 520-530
Author(s):  
Minke Bergsma ◽  
Katharina Denk ◽  
Job N. Doornberg ◽  
Michel P. J. van den Bekerom ◽  
Gino M. M. J. Kerkhoffs ◽  
...  

Abstract Background Volar plating for distal radius fractures exposes the risk of extensor tendon rupture, mechanical problems, and osteoarthritis due to protruding screws. Purposes The purpose of this review was to identify the best intraoperative diagnostic imaging modality to identify dorsal and intra-articular protruding screws in volar plating for distal radius fractures. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines were followed for this review. In vitro and in vivo studies that analyzed the reliability, efficacy, and/or accuracy of intraoperatively available imaging modalities for the detection of dorsal or intra-articular screw protrusion after volar plating for distal radius fractures were included. Results Described additional imaging modalities are additional fluoroscopic views (pronated views, dorsal tangential view [DTV], radial groove view [RGV], and carpal shoot through [CST] view), three-dimensional (3D) and rotational fluoroscopies, and ultrasound (US). For detection of dorsal screw penetration, additional fluoroscopic views show better results than conventional views. Based on small (pilot) studies, US seems to be promising. For intra-articular screw placement, 3D or 360 degrees fluoroscopy shows better result than conventional views. Conclusion Based on this systematic review, the authors recommend the use of at least one of the following additional imaging modalities to prevent dorsal protruding screws: CST view, DTV, or RGV. Tilt views are recommended for intra-articular assessment. Of all additional fluoroscopic views, the DTV is most studied and proves to be practical and time efficient, with higher efficacy, accuracy, and reliability compared with conventional views. Level of Evidence The level of evidence is Level III.


Sign in / Sign up

Export Citation Format

Share Document