scholarly journals GLOBAL SYNCHRONIZATION OF HYBRID COUPLED NEURAL NETWORKS WITH INTERVAL TIME-VARYING AND UNBOUNDED DISTRIBUTED DELAYS VIA SAMPLED-DATA FEEDBACK CONTROL

Author(s):  
N. Yotha ◽  
T. Botmart ◽  
T. Mouktonglang
2016 ◽  
Vol 10 (02) ◽  
pp. 1750025
Author(s):  
Thongchai Botmart ◽  
Narongsak Yotha ◽  
Kanit Mukdasai ◽  
Supreecha Wongaree

This paper is concerned with the global synchronization problems for coupled neural networks (NNs) with hybrid coupling and interval time-varying delays. An appropriate Lyapunov–Krasovskii functional (LKF) and Kronecker product properties are used to form some new delay-dependent synchronization conditions in terms of linear matrix inequalities. A matrix-based quadratic convex approach introduce for sufficient conditions to ensure global synchronization where the time-varying delay is continuous uniformly bounded and its time-derivative bounded by upper and lower bounds. Simulation results are given to show the effectiveness and benefits of the proposed methods.


2012 ◽  
Vol 218 (12) ◽  
pp. 6762-6775 ◽  
Author(s):  
M.J. Park ◽  
O.M. Kwon ◽  
Ju H. Park ◽  
S.M. Lee ◽  
E.J. Cha

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Xinsong Yang ◽  
Mengzhe Zhou ◽  
Jinde Cao

This paper investigates global synchronization in an array of coupled neural networks with time-varying delays and unbounded distributed delays. In the coupled neural networks, limited transmission efficiency between coupled nodes, which makes the model more practical, is considered. Based on a novel integral inequality and the Lyapunov functional method, sufficient synchronization criteria are derived. The derived synchronization criteria are formulated by linear matrix inequalities (LMIs) and can be easily verified by using Matlab LMI Toolbox. It is displayed that, when some of the transmission efficiencies are limited, the dynamics of the synchronized state are different from those of the isolated node. Furthermore, the transmission efficiency and inner coupling matrices between nodes play important roles in the final synchronized state. The derivative of the time-varying delay can be any given value, and the time-varying delay can be unbounded. The outer-coupling matrices can be symmetric or asymmetric. Numerical simulations are finally given to demonstrate the effectiveness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document