scholarly journals OBSERVATIONS OF SPACE DEBRIS IN THE VICINITY OF ORBITS OF GLOBAL NAVIGATION SATELLITE SYSTEMS

2020 ◽  
Vol 6 (3) ◽  
pp. 94-100
Author(s):  
Ivan Korobtsev ◽  
Tatyana Tsukker ◽  
Marina Mishina ◽  
Vladimir Goryashin ◽  
Maxim Eselevich

The problem of the amount and characteristics of space debris in the vicinity of orbits of Global Navigation Satellite Systems (GNSS) is of significant interest from the viewpoint of safe operation of these systems. Attempts have repeatedly been made to search for space debris fragments in a given region of orbits, but have not led to cataloging such objects. Only in 2018, eight space objects were discovered which were not related to active or inactive spacecraft or their launch elements. Photometrical and trajectory observations with optical telescopes are practically the only source of information about characteristics of such objects. The paper presents a summary of the design features and technical characteristics of the new AZT-33VM telescope. We describe a technique for determining orbital parameters of non-cataloged space debris from optical measurements. We report the results of photometric observations of a space object, detected in the vicinity of orbits of the Global Navigation Satellite System GLONASS.

2020 ◽  
Vol 6 (3) ◽  
pp. 115-123
Author(s):  
Ivan Korobtsev ◽  
Tatyana Tsukker ◽  
Marina Mishina ◽  
Vladimir Goryashin ◽  
Maxim Eselevich

The problem of the amount and characteristics of space debris in the vicinity of orbits of Global Navigation Satellite Systems (GNSS) is of significant interest from the viewpoint of safe operation of these systems. Attempts have repeatedly been made to search for space debris fragments in a given region of orbits, but have not led to cataloging such objects. Only in 2018, eight space objects were discovered which were not related to active or inactive spacecraft or their launch elements. Photometrical and trajectory observations with optical telescopes are practically the only source of information about characteristics of such objects. The paper presents a summary of the design features and technical characteristics of the new AZT-33VM telescope. We describe a technique for determining orbital parameters of non-cataloged space debris from optical measurements. We report the results of photometric observations of a space object, detected in the vicinity of orbits of the Global Navigation Satellite System GLONASS.


2007 ◽  
Vol 42 (3) ◽  
pp. 149-153
Author(s):  
A. Farah

Code Single Point Positioning Using Nominal Gnss Constellations (Future Perception) Global Navigation Satellite Systems (GNSS) have an endless number of applications in industry, science, military, transportation and recreation & sports. Two systems are currently in operation namely GPS (the USA Global Positioning System) and GLONASS (the Russian GLObal NAvigation Satellite System), and a third is planned, the European satellite navigation system GALILEO. The potential performance improvements achievable through combining these systems could be significant and expectations are high. The need is inevitable to explore the future of positioning from different nominal constellations. In this research paper, Bernese 5.0 software could be modified to simulate and process GNSS observations from three different constellations (GPS, Glonass and Galileo) using different combinations. This study presents results of code single point positioning for five stations using the three constellations and different combinations.


2008 ◽  
Vol 43 (2) ◽  
pp. 65-73
Author(s):  
A. Farah

Double-Difference Carrier-Phase Network Solution Using Nominal Gnss Constellations (Future Perception)Global Navigation Satellite Systems (GNSS) have an endless number of applications in industry, science, military, transportation and recreation & sports. Two systems are currently in operation namely GPS (the USA Global Positioning System) and GLONASS (the Russian GLObal NAvigation Satellite System), and a third is planned, the European satellite navigation system GALILEO. The potential performance improvements achievable through combining these systems could be significant and expectations are high. The need is inevitable to explore the future of positioning accuracy using different nominal constellations. In this research paper, Bernese 5.0 software could be modified to simulate and process GNSS observations from three different constellations (GPS, Glonass and Galileo) using different combinations. This study presents results of double-difference carrier-phase solution for five stations-network using the three constellations and different combinations.


2021 ◽  
Vol 5 (1) ◽  
pp. 44-50
Author(s):  
N. V. Leonidov

The purpose of this article is to analyze the existing algorithms of autonomous control of the integrity of the navigation field of the GLONASS system. The analysis is based on domestic materials and official foreign applications. At the beginning of the article, the concept of the integrity of the global navigation satellite system is given in the form in which it is used in International Civil Aviation Organization and among the developers of such systems. The differences between the common types of control of the integrity of the navigation field are shown. The modeling of individual operational characteristics, including the average geometric factor, visibility, and accessibility for different angles of the site, is carried out. The main solutions to the problem of reduced tactical and technical characteristics of the system are compared. The existing prerequisites for the improvement of the GLONASS system and for the use of small navigation spacecraft to eliminate the gap between GLONASS and competing global navigation satellite systems are listed. As a result, a variant of improving the circumstances for the application of these algorithms in unfavorable conditions in relation to the GLONASS system is proposed. It is shown that the low-orbit addition to the GLONASS system can significantly improve the tactical and technical characteristics of the complex as a whole and provide higher reliability of the system as a whole due to the operational maintenance of the integrity of the navigation field.


Author(s):  
Etienne Cheynet ◽  
Jasna Bogunović Jakobsen ◽  
Jónas Snæbjörnsson

A Global Navigation Satellite System (GNSS) has been deployed on the Lysefjord Bridge in Norway, to measure the static and dynamic displacement of the deck. One objective is to evaluate the systems capability to monitor accurately wind-induced vibrations in high-latitudes and mountainous terrain. GNSS measurements are compared to displacement records obtained from accelerometers located inside the bridge deck. For data of 10 minutes duration, the accelerometers were observed to monitor frequencies below 0.1 Hz with relatively poor accuracy. The GNSS measurements agreed well with the theoretical estimates of the quasi-static and resonant response of the bridge at low frequencies. The completion of the Galileo system in 2020 should expand the applicability and reliability of such systems for structural monitoring purposes in Northern Europe.


Sign in / Sign up

Export Citation Format

Share Document