single point positioning
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 34)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 6 (24) ◽  
pp. 301-311
Author(s):  
Muhammad Farid Mohd Yazair ◽  
Tajul Ariffin Musa ◽  
Wan Anom Wan Aris ◽  
Ivin Amri Musliman ◽  
Abdullah Hisam Omar

Maritime safety of navigation is essential for maritime activities especially when approaching the harbor. One of the important aspects in safety of navigation is positioning accuracy which the accuracy should less than 5 meters as recommended by IALA. Such accuracy can be provided by DGPS services. Nevertheless, the DGPS accuracy is bound to distance-dependent error due to uncorrelated errors between reference and rover station. By implementing the network-based DGPS technique, this issue however can be expected to be improved. This issue can be overcome by implementing the network-based DGPS technique to the positioning method. Hence, multiple of CORS in Peninsular Malaysia and Sumatran Indonesian were utilized to generate the network-based DGPS corrections based on LIM to cover the west coast of Peninsular Malaysia. The single point positioning, DGPS and network-based DGPS solutions were being compared with known points to determine the reliability of positioning in marine activities. The accuracy shows that the DGPS and network-based DGPS are better compared to single point positioning with below than 15m and 20m respectively. Meanwhile, the DGPS technique clearly had shown the distance-dependent error propagation in positioning. This paper presents on the accuracy and efficiency of network DGPS technique in reducing the distance-dependent error in DGPS positioning.


2021 ◽  
Vol 13 (19) ◽  
pp. 3888
Author(s):  
Guangxing Wang ◽  
Zhihao Yin ◽  
Zhigang Hu ◽  
Gang Chen ◽  
Wei Li ◽  
...  

The broadcast ionospheric model is mainly used to correct the ionospheric delay error for single-frequency users. Since the BeiDou global ionospheric delay correction model (BDGIM) is a novel broadcast ionospheric model for BDS-3, its performance was analyzed through single point positioning (SPP) in this study. Twenty-two stations simultaneously receiving B1C, B2a, B1I and B3I signals were selected from the International GNSS Service (IGS) and the International GNSS Monitoring and Assessment System (iGMAS) tracking networks for the SPP experiments. The differential code bias (DCB) parameters were used to correct the hardware delays in the signals of B1C and B2a. The results showed that the BDGIM performs the best in high-latitude areas, and can effectively improve the positioning accuracy compared with the Klobuchar model. The average 3D positioning accuracy of the four civil signals can reach 3.58 m in high-latitude areas. The positioning accuracies with the BDGIM in the northern hemisphere are better than those in the southern hemisphere, and the global average 3D positioning accuracy of the four civil signals is 4.60 m. The performance of the BDGIM also shows some seasonal differences. The BDGIM performs better than the Klobuchar model on the days of spring equinox and winter solstice, while the opposite is true on the days of summer solstice and autumn equinox. On the day of winter solstice, the average 3D accuracies with the BDGIM on the signals of B1C, B2a, B1I and B3I are 4.13 m, 5.32 m, 4.40 m and 4.49 m, respectively. Although the SPP accuracies are to some extent affected by the geomagnetic storm, the BDGIM generally performs better and are more resistant to the geomagnetic storm than the Klobuchar model.


2021 ◽  
pp. 1-16
Author(s):  
Oladipo Emmanuel Abe ◽  
Babatunde Adeyemi ◽  
Olugbenga Ogunmodimu ◽  
Israel Emmanuel ◽  
E.J. Oluwadare ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 2325
Author(s):  
Tong Feng ◽  
Shilin Chen ◽  
Zhongke Feng ◽  
Chaoyong Shen ◽  
Yi Tian

Global navigation satellite systems (GNSS) can quickly, efficiently, and accurately provide precise coordinates of points, lines, and surface elements, plus complete surveys and determine various boundary lines in forest investigations and management. The system has become a powerful tool for dynamic forest resource investigations and monitoring. GNSS technology plays a unique and important role in estimating timber volume, calculating timber cutting area, and determining the location of virgin forest roads and individual trees in forests. In this study, we quantitatively analyzed the influence of crown size and observation time on the single-point positioning accuracy of GNSS receivers for different forest types. The GNSS located single points for different forest types and crown sizes, enabling the collection of data. The locating time for each tree was more than 10 min. Statistical methods were used to analyze the positioning accuracy of multi-epoch data, and a model was developed to estimate the maximum positioning errors under different forest conditions in a certain positioning time. The results showed that for a continuous positioning time of approximately 10 min, the maximum positioning accuracies in coniferous and broadleaf forests were obtained, which were 12.13 and 15.11 m, respectively. The size of a single canopy had no obvious influence on the single-point positioning error of the GNSS, and canopy density was proven to be closely related to the positioning accuracy of a GNSS. The determination coefficients (R2) in the regression analysis of the general model, coniferous forest model, and broadleaved forest model that were developed in this study were 0.579, 0.701, and 0.544, respectively. These results indicated that the model could effectively predict the maximum positioning error in a certain period of time under different forest types and crown conditions at middle altitudes, which has important guiding significance for forest resource inventories and precise forest management.


2021 ◽  
Vol 13 (6) ◽  
pp. 1202
Author(s):  
Ling Yang ◽  
Jinfang Wang ◽  
Haojun Li ◽  
Timo Balz

The tropospheric delay is one of the main error sources that degrades the accuracy of Global Navigation Satellite Systems (GNSS) Single Point Positioning (SPP). Although an empirical model is usually applied for correction and thereby to improve the positioning accuracy, the residual tropospheric delay is still drowned in measurement noise, and cannot be further compensated by parameter estimation. How much this type of residual error would sway the SPP positioning solutions on a global scale are still unclear. In this paper, the biases on SPP solutions introduced by the residual tropospheric delay when using nine conventionally Zenith Tropospheric Delay (ZTD) models are analyzed and discussed, including Saastamoinen+norm/Global Pressure and Temperature (GPT)/GPT2/GPT2w/GPT3, University of New Brunswick (UNB)3/UNB3m, European Geostationary Navigation Overlay System (EGNOS) and Vienna Mapping Functions (VMF)3 models. The accuracies of the nine ZTD models, as well as the SPP biases caused by the residual ZTD (dZTD) after model correction are evaluated using International GNSS Service (IGS)-ZTD products from around 400 globally distributed monitoring stations. The seasonal, latitudinal, and altitudinal discrepancies are analyzed respectively. The results show that the SPP solution biases caused by the dZTD mainly occur on the vertical direction, nearly to decimeter level, and significant discrepancies are observed among different models at different geographical locations. This study provides references for the refinement and applications of the nine ZTD models for SPP users.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-12
Author(s):  
Artur Fischer ◽  
Sławomir Cellmer ◽  
Krzysztof Nowel

Abstract. This paper proposes a new mathematical method of ionospheric delay estimation in single point positioning (SPP) using a single-frequency receiver. The proposed approach focuses on the Δ vertical total electron content (VTEC) component estimation (MSPPwithdVTEC) with the assumption of an initial and constant value equal to 5 TECU in any observed epoch. The principal purpose of the study is to examine the reliability of this approach to become independent from the external data in the ionospheric correction calculation process. To verify the MSPPwithdVTEC, the SPP with the Klobuchar algorithm was employed as a reference model, utilizing the coefficients from the navigation message. Moreover, to specify the level of precision of the MSPPwithdVTEC, the SPP with the International Global Navigation Satellite Systems (GNSS) Service (IGS) TEC map was adopted for comparison as the high-quality product in the ionospheric delay determination. To perform the computational tests, real code data were involved from three different localizations in Scandinavia using two parallel days. The criterion was the ionospheric changes depending on geodetic latitude. Referring to the Klobuchar model, the MSPPwithdVTEC obtained a significant improvement of 15 %–25 % in the final SPP solutions. For the SPP approach employing the IGS TEC map and for the MSPPwithdVTEC, the difference in error reduction was not significant, and it did not exceed 1.0 % for the IGS TEC map. Therefore, the MSPPwithdVTEC can be assessed as an accurate SPP method based on error reduction value, close to the SPP approach with the IGS TEC map. The main advantage of the proposed approach is that it does not need external data.


Sign in / Sign up

Export Citation Format

Share Document