point positioning
Recently Published Documents


TOTAL DOCUMENTS

1008
(FIVE YEARS 362)

H-INDEX

42
(FIVE YEARS 10)

2022 ◽  
Vol 14 (2) ◽  
pp. 334
Author(s):  
Ke Qi ◽  
Yamin Dang ◽  
Changhui Xu ◽  
Shouzhou Gu

Satellite phase fractional cycle biases (FCBs) are crucial to precise point positioning with ambiguity resolution (PPP–AR), and they can improve the accuracy and reliability of a solution. Traditional methods need multiple iterations and need to keep the same reference when estimating satellite phase fractional cycle biases. In this paper, we propose an improved fast estimation of FCB, which does not need any iterations and can select any reference when estimating FCB. We compare the suitability and precision of a traditional and a proposed method by BDS-3 experiments. The results of the FCB experiments show that the calculated time of the proposed method is less than the traditional method and that computation efficiency is increased by 34.71%. These two methods have a similar rate of fixed epochs and ambiguities in the static and dynamic models. However, the time to first fix (TTFF) of the proposed method decreased by 19.69% and 28.83% for the static and dynamic models, respectively. The results show that the proposed method has a better convergence time in PPP–AR.


Space Weather ◽  
2022 ◽  
Author(s):  
Xiaomin Luo ◽  
Junfeng Du ◽  
Yidong Lou ◽  
Shengfeng Gu ◽  
Xinan Yue ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 128
Author(s):  
Bing Xue ◽  
Yunbin Yuan ◽  
Han Wang ◽  
Haitao Wang

Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) is an attractive positioning technology due to its high precision and flexibility. However, the vulnerability of PPP brings a safety risk to its application in the field of life safety, which must be evaluated quantitatively to provide integrity for PPP users. Generally, PPP solutions are processed recursively based on the extended Kalman filter (EKF) estimator, utilizing both the previous and current measurements. Therefore, the integrity risk should be qualified considering the effects of all the potential observation faults in history. However, this will cause the calculation load to explode over time, which is impractical for long-time missions. This study used the innovations in a time window to detect the faults in the measurements, quantifying the integrity risk by traversing the fault modes in the window to maintain a stable computation cost. A non-zero bias was conservatively introduced to encapsulate the effect of the faults before the window. Coping with the multiple simultaneous faults, the worst-case integrity risk was calculated to overbound the real risk in the multiple fault modes. In order to verify the proposed method, simulation and experimental tests were carried out in this study. The results showed that the fixed and hold mode adopted for ambiguity resolution is critical to an integrity risk evaluation, which can improve the observation redundancy and remove the influence of the biased predicted ambiguities on the integrity risk. Increasing the length of the window can weaken the impact of the conservative assumption on the integrity risk due to the smoothing effect of the EKF estimator. In addition, improving the accuracy of observations can also reduce the integrity risk, which indicates that establishing a refined PPP random model can improve the integrity performance.


Survey Review ◽  
2021 ◽  
pp. 1-13
Author(s):  
Hong Zhao ◽  
Zhi Liu ◽  
Guangwei Jiang ◽  
Zhanke Liu ◽  
Yangyang Sun ◽  
...  

2021 ◽  
Author(s):  
Weiping Liu ◽  
Bo Jiao ◽  
Jinming Hao ◽  
Zhiwei Lv ◽  
Jiantao Xie ◽  
...  

Abstract Being the first mixed-constellation global navigation system, the global BeiDou navigation system (BDS-3) designs new signals, the service performance of which has attracted extensive attention. In the present study, the Signal-in-space range error (SISRE) computation method for different types of navigation satellites was presented. And the differential code bias (DCB) correction method for BDS-3 new signals was deduced. Based on these, analysis and evaluation were done by adopting the actual measured data after the official launching of BDS-3. The results showed that BDS-3 performed better than the regional navigation satellite system (BDS-2) in terms of SISRE. Specifically, the SISRE of the BDS-3 medium earth orbit (MEO) satellites reached 0.52 m, slightly inferior compared to 0.4 m from Galileo, marginally better than 0.57 m from GPS, and significantly better than 2.33 m from GLONASS. And the BDS-3 inclined geostationary orbit (IGSO) satellites achieved the SISRE of 0.90 m, on par with that of the QZSS IGSO satellites. However, the average SISRE of BDS-3 geostationary earth orbit (GEO) satellites was 1.15 m, which was marginally inferior to that of the QZSS GEO satellite (0.91m). In terms of positioning accuracy, the overall three-dimensional single-frequency standard point positioning (SPP) accuracy of BDS-3 B1C, B2a, B1I, and B3I gained an accuracy level better than 5 m. Moreover, the B1I signal exhibited the best positioning accuracy in the Asian-Pacific region, while the B1C signal set forth the best positioning accuracy in the other regions. Owing to the advantage in signal frequency, the dual-frequency SPP accuracy of B1C+B2a surpassed that of the transitional signal of B1I+B3I. Since there are more visible satellites in Asia-Pacific, the positioning accuracy of BDS-3 was moderately superior to that of GPS. The precise point positioning (PPP) accuracy of BDS-3 B1C+B2a or B1I+B3I converged to the order of centimeters, marginally inferior to that of the GPS L1+L2. However, these three combinations had a similar convergence time of approximately 30 minutes.


2021 ◽  
Vol 13 (24) ◽  
pp. 5093
Author(s):  
Ke Su ◽  
Shuanggen Jin

Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) enables the estimation the ionospheric vertical total electron content (VTEC) as well as the by-product of the satellite Pseudorange observable-specific signal bias (OSB). The single-frequency PPP models, with the ionosphere-float and ionosphere-free approaches in ionospheric studies, have recently been discussed by the authors. However, the multi-frequency observations can improve the performances of the ionospheric research compared with the single-frequency approaches. This paper presents three dual-frequency PPP approaches using the BeiDou Navigation Satellite System (BDS) B1I/B3I observations to investigate ionospheric activities. Datasets collected from the globally distributed stations are used to evaluate the performance of the ionospheric modeling with the ionospheric single- and multi-layer mapping functions (MFs), respectively. The characteristics of the estimated ionospheric VTEC and BDS satellite pseudorange OSB are both analyzed. The results indicated that the three dual-frequency PPP models could all be applied to the ionospheric studies, among which the dual-frequency ionosphere-float PPP model exhibits the best performance. The three dual-frequency PPP models all possess the capacity for ionospheric applications in the GNSS community.


GPS Solutions ◽  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Jacek Paziewski

AbstractWe analyze the observation quality, assess the performance and identify the constraints of quadruple-constellation single-frequency ionospheric-free precise point positioning (SF-IF PPP) with low-cost receivers. It is revealed that low-cost receivers with patch antennas exhibit lower C/N0 records and a weaker elevation dependence of C/N0 than the high-grade equipment. The results demonstrate that low-cost receivers can offer code measurements with similar noise compared to high-grade receivers providing that the multipath effect is eliminated. Regarding positioning performance, it is shown how SF-IF PPP for the high-grade receiver converges approximately two times faster than for the low-cost receiver with a patch antenna. It is confirmed that an application of a survey-grade antenna instead of the patch one noticeably enhances the performance of low-cost receiver SF-IF PPP. The study also reveals that the multipath effect is a dominant factor that constrains the performance of SF-IF PPP with low-cost receivers.


2021 ◽  
Vol 13 (23) ◽  
pp. 4894
Author(s):  
Min Li ◽  
Zhuo Lei ◽  
Wenwen Li ◽  
Kecai Jiang ◽  
Tengda Huang ◽  
...  

The opening access of global navigation satellite system (GNSS) raw data in Android smart devices has led to numerous studies on precise point positioning on mobile phones, among which single-frequency precise point positioning (SF-PPP) has become popular because smartphone-based dual-frequency data still suffer from poor observational quality. As the ionospheric delay is a dominant factor in SF-PPP, we first evaluated two SF-PPP approaches with the MGEX (Multi-GNSS Experiment) stations, the Group and Phase Ionospheric Correction (GRAPHIC) approach and the uncombined approach, and then applied them to a Huawei P40 smartphone. For MGEX stations, both approaches achieved less than 0.1 m and 0.2 m accuracy in horizontal and vertical components, respectively. Uncombined SF-PPP manifested a significant decrease in the convergence time by 40.7%, 20.0%, and 13.8% in the east, north, and up components, respectively. For P40 data, the SF-PPP performance was analyzed using data collected with both a built-in antenna and an external geodetic antenna. The P40 data collected with the built-in antenna showed lower carrier-to-noise ratio (C/N0) values, and the pseudorange noise reached 0.67 m, which is about 67% larger than that with a geodetic antenna. Because the P40 pseudorange noise presented a strong correlation with C/N0, a C/N0-dependent weight model was constructed and used for the P40 data with the built-in antenna. The convergence of uncombined SF-PPP approach was faster than the GRAPHIC model for both the internal and external antenna datasets. The root mean square (RMS) errors for the uncombined SF-PPP solutions of P40 with an external antenna were 0.14 m, 0.15 m, and 0.33 m in the east, north, and up directions, respectively. In contrast, the P40 with an embedded antenna could only reach 0.72 m, 0.51 m, and 0.66 m, respectively, indicating severe positioning degradation due to antenna issues. The results indicate that the two SF-PPP models both can achieve sub-meter level positioning accuracy utilizing multi-GNSS single-frequency observations from mobile smartphones.


Sign in / Sign up

Export Citation Format

Share Document